Hostname: page-component-797576ffbb-tx785 Total loading time: 0 Render date: 2023-12-01T13:53:08.568Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Markov blankets and Bayesian territories

Published online by Cambridge University Press:  29 September 2022

Jeff Beck*
Department of Neurobiology, Duke University, Durham, NC 27710, USA


Bruineberg et al. argue that one ought not confuse the map (model) for the territory (reality) and delineate a distinction between innocuous Pearl blankets and metaphysically laden Friston blankets. I argue that all we have are models, all knowledge is conditional, and that if there is a Pearl/Friston distinction, it is a matter of the domain of application: latents or observations. This suggests that, if anything, Friston blankets may inherit philosophical significance previously assigned to observations.

Open Peer Commentary
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Kirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: Autonomy, active inference and the free energy principle. Journal of the Royal Society Interface, 15(138), 20170792. doi:10.1098/rsif.2017.0792CrossRefGoogle ScholarPubMed
Ramstead, M. J. D., Friston, K. J., & Hipólito, I. (2020). Is the free-energy principle a formal theory of semantics? From variational density dynamics to neural and phenotypic representations. Entropy (Basel), 22(8), 889. doi:10.3390/e22080889CrossRefGoogle ScholarPubMed
Russell, B. (1903). Appendix B: The doctrine of types. In Russell, B. (Ed.), The principles of mathematics (pp. 523528). Cambridge University Press.Google Scholar
Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen, 65(2), 261281.CrossRefGoogle Scholar