Let
$\mathbb {N}$ be the set of all nonnegative integers. For
$S\subseteq \mathbb {N}$ and
$n\in \mathbb {N}$, let
$R_S(n)$ denote the number of solutions of the equation
$n=s_1+s_2$,
$s_1,s_2\in S$ and
$s_1<s_2$. Let A be the set of all nonnegative integers which contain an even number of digits
$1$ in their binary representations and
$B=\mathbb {N}\setminus A$. Put
$A_l=A\cap [0,2^l-1]$ and
$B_l=B\cap [0,2^l-1]$. We prove that if
$C \cup D=[0, m]\setminus \{r\}$ with
$0<r<m$,
$C \cap D=\emptyset $ and
$0 \in C$, then
$R_{C}(n)=R_{D}(n)$ for any nonnegative integer n if and only if there exists an integer
$l \geq 1$ such that
$m=2^{l}$,
$r=2^{l-1}$,
$C=A_{l-1} \cup (2^{l-1}+1+B_{l-1})$ and
$D=B_{l-1} \cup (2^{l-1}+1+A_{l-1})$. Kiss and Sándor [‘Partitions of the set of nonnegative integers with the same representation functions’, Discrete Math. 340 (2017), 1154–1161] proved an analogous result when
$C\cup D=[0,m]$,
$0\in C$ and
$C\cap D=\{r\}$.