Let   ${{S}_{k}}(\Gamma )$  be the space of holomorphic cusp forms of even integral weight
 ${{S}_{k}}(\Gamma )$  be the space of holomorphic cusp forms of even integral weight   $k$  for the full modular group. Let
 $k$  for the full modular group. Let   ${{\lambda }_{f}}(n)$  and
 ${{\lambda }_{f}}(n)$  and   ${{\lambda }_{g}}(n)$  be the
 ${{\lambda }_{g}}(n)$  be the   $n$ -th normalized Fourier coefficients of two holomorphic Hecke eigencuspforms
 $n$ -th normalized Fourier coefficients of two holomorphic Hecke eigencuspforms   $f(z),\,g(z)\,\in \,{{S}_{k}}(\Gamma )$ , respectively. In this paper we are able to show the following results about higher moments of Fourier coefficients of holomorphic cusp forms.
 $f(z),\,g(z)\,\in \,{{S}_{k}}(\Gamma )$ , respectively. In this paper we are able to show the following results about higher moments of Fourier coefficients of holomorphic cusp forms.
(i)For any   $\varepsilon \,>\,0$ , we have
 $\varepsilon \,>\,0$ , we have
   $$\sum\limits_{n\le x}{\lambda _{f}^{5}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{15}{16}+\varepsilon }}\text{and}\sum\limits_{n\le x}{\lambda _{f}^{7}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{63}{64}+\varepsilon }}.$$
 $$\sum\limits_{n\le x}{\lambda _{f}^{5}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{15}{16}+\varepsilon }}\text{and}\sum\limits_{n\le x}{\lambda _{f}^{7}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{63}{64}+\varepsilon }}.$$  
(ii)If   $\text{sy}{{\text{m}}^{3\,}}{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{3\,}}{{\pi }_{g}}\,$ , then for any
 $\text{sy}{{\text{m}}^{3\,}}{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{3\,}}{{\pi }_{g}}\,$ , then for any   $\varepsilon \,>\,0$ , we have
 $\varepsilon \,>\,0$ , we have
   $$\sum\limits_{n\le x}{\lambda _{f}^{3}(n)\lambda _{g}^{3}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{31}{32}+\varepsilon }};$$
 $$\sum\limits_{n\le x}{\lambda _{f}^{3}(n)\lambda _{g}^{3}(n){{\ll }_{f,\varepsilon }}}{{x}^{\frac{31}{32}+\varepsilon }};$$  
If   $\text{sy}{{\text{m}}^{2}}\,{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{2}}\,{{\pi }_{g}}$ , then for any
 $\text{sy}{{\text{m}}^{2}}\,{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{2}}\,{{\pi }_{g}}$ , then for any   $\varepsilon \,>\,0$ , we have
 $\varepsilon \,>\,0$ , we have
   $$\sum\limits_{n\le x}{\lambda _{f}^{4}(n)\lambda _{g}^{2}(n)}=cx\log x+{c}'x+{{O}_{f,\varepsilon }}({{x}^{\frac{31}{32}+\varepsilon }});$$
 $$\sum\limits_{n\le x}{\lambda _{f}^{4}(n)\lambda _{g}^{2}(n)}=cx\log x+{c}'x+{{O}_{f,\varepsilon }}({{x}^{\frac{31}{32}+\varepsilon }});$$  
If   $\text{sy}{{\text{m}}^{2}}\,{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{2}}\,{{\pi }_{g}}$  and
 $\text{sy}{{\text{m}}^{2}}\,{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{2}}\,{{\pi }_{g}}$  and   $\text{sy}{{\text{m}}^{4}}{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{4}}{{\pi }_{g}}$ , then for any
 $\text{sy}{{\text{m}}^{4}}{{\pi }_{f}}\,\ncong \,\text{sy}{{\text{m}}^{4}}{{\pi }_{g}}$ , then for any   $\varepsilon \,>\,0$ , we have
 $\varepsilon \,>\,0$ , we have
   $$\sum\limits_{n\le x}{\lambda _{f}^{4}(n)\lambda _{g}^{4}(n)}=xP(\log x)+{{O}_{f,\varepsilon }}({{x}^{\frac{127}{128}+\varepsilon }}),$$
 $$\sum\limits_{n\le x}{\lambda _{f}^{4}(n)\lambda _{g}^{4}(n)}=xP(\log x)+{{O}_{f,\varepsilon }}({{x}^{\frac{127}{128}+\varepsilon }}),$$  
where   $P\left( x \right)$  is a polynomial of degree 3.
 $P\left( x \right)$  is a polynomial of degree 3.