Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T22:33:42.014Z Has data issue: false hasContentIssue false

2 - Coherent and squeezed states of the radiation field

Published online by Cambridge University Press:  05 June 2012

Marlan O. Scully
Affiliation:
Texas A & M University
M. Suhail Zubairy
Affiliation:
Quaid-i-Azam University, Islamabad
Get access

Summary

Following the development of the quantum theory of radiation and with the advent of the laser, the states of the field that most nearly describe a classical electromagnetic field were widely studied. In order to realize such ‘classical’ states, we will consider the field generated by a classical monochromatic current, and find that the quantum state thus generated has many interesting properties and deserves to be called a coherent state. An important consequence of the quantization of the radiation field is the associated uncertainty relation for the conjugate field variables. It therefore appears reasonable to propose that the wave function which corresponds most closely to the classical field must have minimum uncertainty for all times subject to the appropriate simple harmonic potential.

In this chapter we show that a displaced simple harmonic oscillator ground state wave function satisfies this property and the wave packet oscillates sinusoidally in the oscillator potential without changing shape as shown in Fig. 2.1. This coherent wave packet always has minimum uncertainty, and resembles the classical field as nearly as quantum mechanics permits. The corresponding state vector is the coherent state |α〉, which is the eigenstate of the positive frequency part of the electric field operator, or, equivalently, the eigenstate of the destruction operator of the field.

Classically an electromagnetic field consists of waves with welldefined amplitude and phase. Such is not the case when we treat the field quantum mechanically.

Type
Chapter
Information
Quantum Optics , pp. 46 - 71
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×