Published online by Cambridge University Press: 05 June 2012
Matter–wave interferometry dates from the inception of quantum mechanics, i.e., the early electron diffraction experiments. More recent neutron interferometry experiments have yielded new insights into many fundamental aspects of quantum mechanics. Presently, atom interferometry has been demonstrated and holds promise as a new field of optics – matter–wave optics. This field is particularly interesting since the potential sensitivity of matter–wave interferometers far exceeds that of their light-wave or ‘photon’ antecedents.
In this chapter we consider the physics of light-induced forces on the center-of-mass motion of atoms and their application to atom optics (Fig. 17.1). The most obvious being the recoil associated with the emission and absorption of light. This ‘radiation pressure’ is the basis for laser induced cooling.
Another very important mechanical effect is the gradient force due to, e.g., transverse variation in the laser beam. These, essentially semiclassical, forces are useful in guiding and trapping neutral atoms.
After considering the basic forces which allow us to cool, guide, and trap atoms, we turn to the optics of atomic center-of-mass de Broglie waves, i.e., atom optics. In keeping with the spirit of the present text, we will focus on the quantum limits to matter–wave interferometry. An analysis of a matter–wave gyro in an obvious extension of the laser gyro and the similarity and relative merits of the two will be compared and contrasted. Finally we derive the “recoil limit” to laser cooling; and show that it is possible to supersede this limit via atomic coherence effects.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.