Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T15:59:13.754Z Has data issue: false hasContentIssue false

20 - Quantum optical tests of complementarity

Published online by Cambridge University Press:  05 June 2012

Marlan O. Scully
Affiliation:
Texas A & M University
M. Suhail Zubairy
Affiliation:
Quaid-i-Azam University, Islamabad
Get access

Summary

Complementarity, e.g., the wave–particle duality of nature, lies at the heart of quantum mechanics. It distinguishes the world of quantum phenomena from the reality of classical physics. In the 1920s, quantum theory as we know it today was still new, and examples used to illustrate complementarity emphasized the position (particle-like) and momentum (wave-like) attributes of a quantum mechanical object, be it a photon or a massive particle. This is the historical reason why complementarity is often superficially identified with the so-called wave-particle duality of matter.

Complementarity, however, is a more general concept. We say that two observables are complementary if precise knowledge of one of them implies that all possible outcomes of measuring the other one are equally probable. We may illustrate this by two extreme examples. The first example consists of the position and momentum (along one direction) of a particle: if, say, the position is predetermined then the result of a momentum measurement cannot be predicted, all momentum values are equally probable (in a large range). The second extreme involves two orthogonal spin components of a spin- 1/2 particle: if, say, the vertical spin component has a definite value (up or down) then upon measuring a horizontal component both values (left or right, for instance) are found, each with a probability of 50%. Thus, in the microcosmos complete knowledge in the sense of classical physics is not available. The classic example of the merger of wave and particle behavior is provided by Young's double-slit experiment.

Type
Chapter
Information
Quantum Optics , pp. 561 - 581
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×