Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T20:34:36.778Z Has data issue: false hasContentIssue false

12 - Quantum theory of the laser – Heisenberg–Langevin approach

Published online by Cambridge University Press:  05 June 2012

Marlan O. Scully
Affiliation:
Texas A & M University
M. Suhail Zubairy
Affiliation:
Quaid-i-Azam University, Islamabad
Get access

Summary

In this chapter, we present a theory of the laser based on the Heisenberg–Langevin approach. This is a different, but completely equivalent approach to the density operator approach discussed in the previous chapter. In general, the density operator approach is better suited to study the photon statistics of the radiation field whereas the Heisenberg–Langevin approach has certain calculational advantages in the determination of phase diffusion coefficients, and consequently laser linewidth.

In Section 12.1, a simple approach to determine laser linewidth based on a linear theory is presented. This analysis is especially interesting and useful in that it includes atomic memory effects, something that is difficult to do within a density matrix theory. In Sections 12.2–12.4, we consider the complete nonlinear theory of the laser and rederive all the important quantities related to the quantum statistical properties of the radiation field.

A simple Langevin treatment of the laser linewidth including atomic memory effects†

The full nonlinear quantum theory of the laser discussed in the previous chapter yields most of the interesting quantum statistical properties of the radiation field. In many problems of interest, however, we do not need such an elaborate treatment. For example, as we saw in the previous chapter, the natural linewidth of the laser can be determined from a linearized theory of the laser. That is, the full nonlinear theory serves to determine the amplitude of the field but the phase fluctuations about this operating point are described by a linear theory.

Type
Chapter
Information
Quantum Optics , pp. 362 - 382
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×