Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T02:14:55.182Z Has data issue: false hasContentIssue false

8 - Quantum theory of damping – density operator and wave function approach

Published online by Cambridge University Press:  05 June 2012

Marlan O. Scully
Affiliation:
Texas A & M University
M. Suhail Zubairy
Affiliation:
Quaid-i-Azam University, Islamabad
Get access

Summary

In many problems in quantum optics, damping plays an important role. These include, for example, the decay of an atom in an excited state to a lower state and the decay of the radiation field inside a cavity with partially transparent mirrors. In general, damping of a system is described by its interaction with a reservoir with a large number of degrees of freedom. We are interested, however, in the evolution of the variables associated with the system only. This requires us to obtain the equations of motion for the system of interest only after tracing over the reservoir variables. There are several different approaches to deal with this problem.

In this chapter, we present a theory of damping based on the density operator in which the reservoir variables are eliminated by using the reduced density operator for the system in the Schrödinger (or interaction) picture. We also present a ‘quantum jump’ approach to damping. In the next chapter, the damping of the system will be considered using the noise operator method in the Heisenberg picture.

An insight into the damping mechanism is obtained by considering the decay of an atom in an excited state inside a cavity. The atom may be considered as a single system coupled to the radiation field inside the cavity. Even in the absence of photons in the cavity, there are quantum fluctuations associated with the vacuum state. As discussed in Chapter 1, the field may be visualized as a large number of harmonic oscillators, one for each mode of the cavity.

Type
Chapter
Information
Quantum Optics , pp. 248 - 270
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×