To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter $\lambda \gt 0$; the special case $\lambda =1$ corresponds to the uniform distribution over all independent sets. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete $\Delta$-regular tree for all $\lambda$. However, Restrepo, Stefankovic, Vera, Vigoda, and Yang (2014) showed that for sufficiently large $\lambda$ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width.
We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of $O(n)$ for the Glauber dynamics for unweighted independent sets on arbitrary trees. We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree $\Delta$. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order $\lambda =O(1/\Delta )$. Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded-degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance via a non-trivial inductive proof.
The fixed points of the generalized Ricci flow are the Bismut Ricci flat (BRF) metrics, i.e., a generalized metric (g, H) on a manifold M, where g is a Riemannian metric and H a closed 3-form, such that H is g-harmonic and $\operatorname{Rc}(g)=\tfrac{1}{4} H_g^2$. Given two standard Einstein homogeneous spaces $G_i/K$, where each Gi is a compact simple Lie group and K is a closed subgroup of them holding some extra assumption, we consider $M=G_1\times G_2/\Delta K$. Recently, Lauret and Will proved the existence of a BRF metric on any of these spaces. We proved that this metric is always asymptotically stable for the generalized Ricci flow on M among a subset of G-invariant metrics and, if $G_1=G_2$, then it is globally stable.
We answer the following question: if the occupied (or vacant) set of a planar Poisson Boolean percolation model contains a crossing of an $n\times n$ square, how wide is this crossing? The answer depends on whether we consider the critical, sub-, or super-critical regime, and is different for the occupied and vacant sets.
Pipelines are used in many sectors to transport materials such as fluid from one place to another. These pipelines require regular inspection and maintenance to ensure proper operations and to avoid accidents. Many in-pipe navigation robots have been developed to perform the inspection. Soft in-pipe navigation robot is a special class of in-pipe robot, where the structure is made entirely of soft materials. The soft in-pipe robots are cheaper, lightweight, robust, and more adaptable to the environment inside pipelines as compared to the traditional rigid in-pipe navigation robot. This paper reviews the design of different types of soft in-pipe navigation in terms of the material, structure, locomotion strategy, and actuation techniques. These four different aspects of the design help researchers to narrow down their research and explore different opportunities within each of the design aspects. This paper also offers suggestions on the direction of research to improve the current soft in-pipe navigation robot design.
We study the effect of geometrical confinement on thermal convection by laboratory experiments and direct numerical simulations using Hele-Shaw geometries (typically the gap-to-height aspect ratio $0.12$) for the Prandtl number $Pr \geq 40$ and the Rayleigh number $Ra \leq 6 \times 10^7$. Under such strong unidirectional confinement, the convective flows are forced to squeeze within the narrow gap and exhibit unique spatiotemporal signatures, which contrast those in unconfined systems. With the increase of $Ra$, we identify that the system experiences five convective regimes that can be classified from two aspects, time dependency and flow dimensionality: (I) quasi-two-dimensional (quasi-2-D) steady flow; (II) quasi-2-D flow with oscillatory corner rolls; (III) three-dimensional (3-D) flow with oscillatory corner rolls; (IV) 3-D steady flow; and (V) 3-D time-dependent motion of plumes around sidewalls. Notably, unsteadiness does not emerge globally, but is localised near the sidewalls as oscillatory corner rolls, resulting in the regime transitions happening in a quasi-steady manner. We confirm that these regime transitions show less dependence on both $Pr$ and the other (wider) horizontal scale of the geometry. Moreover, we find that a recently proposed criterion ‘degree of confinement’ (Noto et al., Proc. Natl Acad. Sci. USA, vol. 121, issue 28, 2024, e2403699121) successfully explains the emergence of 3-D structures, expanding its applicable range to smaller $Ra$. This study deepens the comprehension of the thermal convection emerging in tight geometries, impacting across disciplines, such as Earth and planetary science, and thermal engineering.
Many populist leaders politicise disputes with external financial ‘elites’, but most are forced by economic pressures to fundamentally change their ‘people-versus-elite’ problem representations and ‘concede defeat’. Notable exceptions are Hungary’s Viktor Orbán, Argentina’s Cristina Kirchner, and Turkey’s Recep Tayyip Erdoğan, who sooner or later resisted strong push-back and defied the IMF or distressed-debt funds. These instances of prolonged populist defiance differ widely across commonly used structural and agential explanatory factors at international, domestic, and individual levels. To explain how Orbán, Kirchner, and Erdoğan managed to ‘beat the elite’, this paper clusters several root causes into a parsimonious framework of two intervening variables. The temporality of strong ‘elite’ push-back and the openness of advisory systems are theorised as shaping distinct cognitive mechanisms of representational continuity or change, through which ‘people-versus-elite’ input is either preserved until – or discarded before – feeding into decision outputs. As the two-by-two matrix of early/later external shocks and open/closed inner circles explains, Orbán did not move beyond marginal representational adjustments; Kirchner’s contingent representational fluidity benefited from opportune situational developments; and Erdoğan defied significant socio-economic cost with fundamental representational continuity. These insights highlight the potential of studying populism at the intersection of foreign policy analysis and international political economy.
Heavy particles suspended in turbulent flow possess inertia and are ejected from violent vortical structures by centrifugal forces. Once piled up along particle paths, this small-scale mechanism leads to an effective large-scale drift. This phenomenon, known as ‘turbophoresis’, causes particles to leave highly turbulent regions and migrate towards calmer regions, explaining why particles transported by non-homogeneous flows tend to concentrate near the minima of turbulent kinetic energy. It is demonstrated here that turbophoretic effects are just as crucial in statistically homogeneous flows. Although the average turbulent activity is uniform, instantaneous spatial fluctuations are responsible for inertial-range inhomogeneities in the particle distribution. Direct numerical simulations are used to probe particle accelerations, specifically how they correlate to local turbulent activity, yielding an effective coarse-grained dynamics that accounts for particle detachment from the fluid and ejection from excited regions through a space- and time-dependent non-Fickian diffusion. This leads to cast fluctuations in particle distributions in terms of a scale-dependent Péclet number ${\textit {Pe}}_\ell$, which measures the importance of turbulent advection compared with inertial turbophoresis at a given scale $\ell$. Multifractal statistics of energy dissipation indicate that $ {\textit {Pe}}_\ell \sim \ell ^\delta /\tau _{p}$ with $\delta \approx 0.84$. Numerical simulations support this behaviour and emphasise the relevance of the turbophoretic Péclet number in characterising how particle distributions, including their radial distribution function, depends on $\ell$. This approach also explains the presence of voids with inertial-range sizes, and the fact that their volumes have a non-trivial distribution with a power-law tail $p(\mathcal {V}) \propto \mathcal {V}^{-\alpha }$, with an exponent $\alpha$ that tends to 2 as ${\textit {Pe}}_\ell \to 0$.
In this article, I identify a conceptually distinct form of epistemic appropriation: the creation and proliferation of the epistemic fata morgana. An epistemic fata morgana is a hermeneutical resource that is hollowed out, stripped of its meaning and political power, and yet, posited as if it were still accessible. This resource is taken up by dominant knowers in a way that preserves only its perception, but not access to it. This process is illustrated by an examination of the resource “sexual harassment” within the university context. The epistemic fata morgana is an important addition to the field of epistemic injustice for it lends itself to highlighting the frustration that is felt by marginalized people, especially within institutional contexts.
We present herein the derivation of a lubrication-mediated (LM) quasi-potential model for droplet rebounds off deep liquid baths, assuming the presence of a persistent dynamic air layer which acts as a lubricating pressure transfer. We then present numerical simulations of the LM model for axisymmetric rebounds of solid spheres and compare quantitatively to current results in the literature, including experimental data in the low-speed impact regime. In this regime the LM model has the advantage of being far more computationally tractable than direct numerical simulation (DNS) and is also able to provide detailed behaviour within the micro-metric thin lubrication region. The LM system has an interesting mathematical structure, with the lubrication layer providing a free-boundary elliptic problem mediating the drop and bath free-boundary evolutionary equations.