To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This investigation sheds light on the social history of pathogenic dirt and its significance for shaping medical practices during the nineteenth century. It consists of an analysis focusing on Swedish medicine, using 8800 yearly reports written 1820–1900 by Swedish provincial doctors for the National Board of Health in Stockholm. The main argument is that the provincial doctors’ perceptions of the relationship between dirt and health during this century can be better understood by focusing on similarities in the handling of different kinds of pathological dirt over the course of many decades, rather than seeing interest in cleanliness as something mostly unprecedented. A novel cleanliness regime became dominant during the latter third of the century, meant to counter a new hybrid between everyday dirt – bodily emanations from healthy bodies – and matter believed to have caused miasmatic and contagionistic disease. New ideas about filth and its impact on health played a crucial role in the development of public health and sanitation movements, and were a precondition for everyday dirt becoming a central medical problem around the turn of the twentieth century, but as is shown, they built on old precedents. Thus, the miasmatic and contagionistic approach to disease shaped conceptions of hygiene and cleanliness.
First predicted by Richtmyer in 1960 and experimentally confirmed by Meshkov in 1969, the Richtmyer–Meshkov instability (RMI) is crucial in fields such as physics, astrophysics, inertial confinement fusion and high-energy-density physics. These disciplines often deal with strong shocks moving through condensed materials or high-pressure plasmas that exhibit non-ideal equations of state (EoS), thus requiring theoretical models with realistic fluid EoS for accurate RMI simulations. Approximate formulae for asymptotic growth rates, like those proposed by Richtmyer, are helpful but rely on heuristic prescriptions for compressible materials. These prescriptions can sometimes approximate the RMI growth rate well, but their accuracy remains uncertain without exact solutions, as the fully compressible RMI growth rate is influenced by both vorticity deposited during shock refraction and multiple sonic wave refractions. This study advances previous work by presenting an analytic, fully compressible theory of RMI for reflected shocks with arbitrary EoS. It compares theoretical predictions with heuristic prescriptions using ideal gas, van der Waals gas and three-term constitutive equations for simple metals, the latter being analysed with detailed and simplified ideal-gas-like EoS. We additionally offer an alternative explicit approximate formula for the asymptotic growth rate. The comprehensive model also incorporates the effects of constant-amplitude acoustic waves at the interface, associated with the D'yakov–Kontorovich instability in shocks.
Turbulent circular pipe flows subjected to axial system rotation are studied using direct numerical simulations (DNS) for a wide range of rotation numbers of $Ro_b = 0\unicode{x2013}20$ at a fixed Reynolds number. To ensure that energetic turbulent eddy motions are captured at high rotation numbers, long pipes up to $L_z = 180{\rm \pi} R$ are used in DNS. Two types of energy-containing flow structures have been observed. The first type is hairpin structures that are characteristic of the turbulent boundary layer developing over the pipe wall for both non-rotating and axially rotating flows. The second type is Taylor columns forming at moderate and high rotation numbers. Based on the study of two-point autocorrelation coefficients, it is observed that Taylor columns exhibit quasi-periods in both axial and azimuthal directions. According to the premultiplied spectra, Taylor columns feature one single characteristic axial length scale at the moderate rotation numbers but two at high rotation numbers. It is discovered that the axial system rotation suppresses the sweep events systematically and impedes the formation of hairpin structures. As the rotation number is increased, the turbulence kinetic energy held by Taylor columns enhances rapidly associated with significant increases in their axial length scales.
To establish quick-reference criteria regarding the frequency of statistically rare changes in seven neuropsychological measures administered to older adults.
Method:
Data from 935 older adults examined over a two-year interval were obtained from the Alzheimer’s Disease Neuroimaging Initiative. The sample included 401 cognitively normal older adults whose scores were used to determine the natural distribution of change scores for seven cognitive measures and to set change score thresholds corresponding to the 5th percentile. The number of test scores that exceeded these thresholds were counted for the cognitively normal group, as well as 381 individuals with mild cognitive impairment (MCI) and 153 individuals with dementia. Regression analyses examined whether the number of change scores predicted diagnostic group membership beyond demographic covariates.
Results:
Only 4.2% of cognitively normal participants obtained two or more change scores that fell below the 5th percentile of change scores, compared to 10.6% of the stable MCI participants and 38.6% of those who converted to dementia. After adjusting for age, gender, race/ethnicity, and premorbid estimates, the number of change scores below the 5th percentile significantly predicted diagnostic group membership.
Conclusions:
It was uncommon for older adults to have two or more change scores fall below the 5th percentile thresholds in a seven-test battery. Higher change counts may identify those showing atypical cognitive decline.
We study Morita equivalence for idempotent rings with involution. Following the ideas of Rieffel, we define Rieffel contexts, and we also introduce Morita $*$-contexts and enlargements for rings with involution. We prove that two idempotent rings with involution have a joint enlargement if and only if they are connected by a unitary and full Rieffel context. These conditions are also equivalent to having a unitary and surjective Morita $*$-context between those rings. We also examine how the mentioned conditions are connected to the existence of certain equivalence functors between the categories of firm modules over the given rings with involution.
Aerodynamic breakup of vaporizing drops is commonly seen in many spray applications. While it is well known that vaporization can modulate interfacial instabilities, the impact of vaporization on drop aerobreakup is poorly understood. Detailed interface-resolved simulations were performed to systematically study the effect of vaporization, characterized by the Stefan number, on the drop breakup and acceleration for different Weber numbers and density ratios. It is observed that the resulting asymmetric vaporization rates and strengths of Stefan flow on the windward and leeward sides of the drop hinder bag development and prevent drop breakup. The critical Weber number thus generally increases with the Stefan number. The modulation of the boundary layer also contributes to a significant increase of drag coefficient. Numerical experiments were performed to affirm that the drop volume reduction plays a negligible role and the Stefan flow is the dominant reason for the breakup suppression and drag enhancement observed.
In this work, the Riemann–Hilbert (RH) problem is employed to study the multiple high-order pole solutions of the cubic Camassa–Holm (cCH) equation with the term characterizing the effect of linear dispersion under zero boundary conditions and nonzero boundary conditions. Under the reflectionless situation, we generalize the residue theorem and obtain the multiple high-order pole solutions of cCH equation by solving an algebraic system. During the process of establishing the solution of RH problem, to simplify the calculations involving the implicitly expressed of variables (x, t) in the solution, we introduce a new scale (y, t) to ensure the solution of RH problem is explicitly expressed with respect to it. Finally, the exact solutions are obtained for cases involving one high-order pole and N high-order poles.
A novel fast-running model is developed to predict the three-dimensional (3-D) distribution of turbulent kinetic energy (TKE) in axisymmetric wake flows. This is achieved by mathematically solving the partial differential equation of the TKE transport using the Green's function method. The developed solution reduces to a double integral that can be computed numerically for a wake prescribed by any arbitrary velocity profile. It is shown that the solution can be further simplified to a single integral for wakes with Gaussian-like velocity-deficit profiles. Wind tunnel experiments were performed to compare model results against detailed 3-D laser Doppler anemometry data measured within the wake flow of a porous disk subject to a uniform free-stream flow. Furthermore, the new model is used to estimate the TKE distribution at the hub-height level of the rotating non-axisymmetric wake of a model wind turbine immersed in a rough-wall boundary layer. Our results show the important impact of operating conditions on TKE generation in wake flows, an effect not fully captured by existing empirical models. The wind-tunnel data also provide insights into the evolution of important turbulent flow quantities such as turbulent viscosity, mixing length and the TKE dissipation rate in wake flows. Both mixing length and turbulent viscosity are found to increase with the streamwise distance. The turbulent viscosity, however, reaches a plateau in the far-wake region. Consistent with the non-equilibrium theory, it is also observed that the normalised energy dissipation rate is not constant, and it increases with the streamwise distance.
We present a one-parameter family Fλ of transcendental entire functions with zeros, whose Newton’s method yields wandering domains, coexisting with the basins of the roots of Fλ. Wandering domains for Newton maps of zero-free functions have been built before by, e.g. Buff and Rückert [23] based on the lifting method. This procedure is suited to our Newton maps as members of the class of projectable functions (or maps of the cylinder), i.e. transcendental meromorphic functions f(z) in the complex plane that are semiconjugate, via the exponential, to some map g(w), which may have at most a countable number of essential singularities. In this paper, we make a systematic study of the general relation (dynamical and otherwise) between f and g, and inspect the extension of the logarithmic lifting method of periodic Fatou components to our context, especially for those g of finite-type. We apply these results to characterize the entire functions with zeros whose Newton’s method projects to some map g which is defined at both 0 and $\infty$. The family Fλ is the simplest in this class, and its parameter space shows open sets of λ-values in which the Newton map exhibits wandering or Baker domains, in both cases regions of initial conditions where Newton’s root-findingmethod fails.
Because nuclear power development entails massive initial investments in power plants, along with institutional innovations in regulation, law, and basic physical infrastructure, there are strong grounds to support the pervasiveness of the central state in the industry. Furthermore, considering the scale economies in reactor installation, standardization in design, and enhanced learning by doing, little scope remains for the consideration of decentralized business interests. This article argues that competition, in the sense of rivalry between firms, can nonetheless be a driving force behind the nuclear industry. To illustrate the point, we draw a comparative, eventful history of two Iberian nations, Portugal and Spain: Portugal has failed several attempts to introduce nuclear power, while Spain has become one of the largest nuclear power nations in Europe. A fine-grained analysis of the circumstances surrounding the nuclear history of both countries is presented, highlighting the key variables of business history and the role of the central state and political actors in economic policy.
Let $f:X\to Y$ be a surjective projective map, and let L be a holomorphic line bundle on X equipped with a (singular) semi-positive Hermitian metric h. In this article, by studying the canonical metric on the direct image sheaf of the twisted relative canonical bundles $K_{X/Y}\otimes L\otimes \mathscr {I}(h)$, we obtain that this metric has dual Nakano semi-positivity when h is smooth and there is no deformation by f and that this metric has locally Nakano semi-positivity in the singular sense when h is singular.
Vertical thermal convection is a non-equilibrium system in which both buoyancy and shear forces play a role in driving the convective flow. Beyond the onset of convection, the driven dissipative system exhibits chaotic dynamics and turbulence. In a three-dimensional domain extended in both the vertical and the transverse dimensions, Gao et al. (Phys. Rev. E, vol. 97, 2018, 053107) have observed a variety of convection patterns which are not described by linear stability analysis. We investigate the fully nonlinear dynamics of vertical convection using a dynamical-systems approach based on the Oberbeck–Boussinesq equations. We compute the invariant solutions of these equations and the bifurcations that are responsible for the creation and termination of various branches. We map out a sequence of local bifurcations from the laminar base state, including simultaneous bifurcations involving patterned steady states with different symmetries. This atypical phenomenon of multiple branches simultaneously bifurcating from a single parent branch is explained by the role of $D_4$ symmetry. In addition, two global bifurcations are identified: first, a homoclinic cycle from modulated transverse rolls and second, a heteroclinic cycle linking two symmetry-related diamond-roll patterns. These are confirmed by phase space projections as well as the functional form of the divergence of the period close to the bifurcation points. The heteroclinic orbit is shown to be robust and to result from a 1:2 mode interaction. The intricacy of this bifurcation diagram highlights the essential role played by dynamical systems theory and computation in hydrodynamic configurations.
The article studies an initial boundary valueproblem (ibvp) for the radial solutions of the nonlinear Schrödinger (NLS) equation in a radially symmetric region $\Omega\in \mathbb R^n$ with boundaries. All such regions can be classified into three types: a ball Ω0 centred at origin, a region Ω1 outside a ball, and an n-dimensional annulus Ω2. To study the well-posedness of those ibvps, the function spaces for the boundary data must be specified in terms of the solutions in appropriate Sobolev spaces. It is shown that when $\Omega = \Omega_1$, the ibvp for the NLS equation is locally well-posed in $ C( [0, T^*]; H^s(\Omega_1))$ if the initial data is in $H^s(\Omega_1)$ and boundary data is in $ H^{\frac{2s+1}{4}}(0, T)$ with $s \geq 0$. This is the optimal regularity for the boundary data and cannot be improved. When $\Omega = \Omega_2$, the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_2))$ if the initial data is in $ H^s(\Omega_2)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with $s \geq 0$. In this case, the boundary data requires $1/4$ more derivative compared to the case when $\Omega = \Omega_1$. When $\Omega = \Omega_0$ with n = 2 (the case with n > 2 can be discussed similarly), the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_0))$ if the initial data is in $ H^s(\Omega_0)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with s > 1 (or $s \gt n/2$). Due to the lack of Strichartz estimates for the corresponding boundary integral operator with $ 0 \leq s \leq 1$, the local well-posedness can only be achieved for s > 1. It is noted that the well-posedness results on Ω0 and Ω2 are the first ones for the ibvp of NLS equations in bounded regions of higher dimension.
In a recent article Jack Mulder, Jr gives a Plantinga-style defence of the Virgin Mary’s free consent to bear Jesus at the Annunciation. Against Mulder, I argue that a theodicy (rather than a defence) is necessary to undermine my arguments, that Mulder’s Catholic appeal to Mary’s Immaculate Conception amounts to a kind of freedom-undermining metaphysical grooming, and therefore Marian consent remains invalid.
The friction drag of the axial flow along the outer surface of a cylinder varies with the cylinder radius and flow conditions. This study included direct numerical simulations of the axial turbulent flow along a circular cylinder under different conditions for obtaining the turbulence statistics and wall friction coefficient. Then the characteristics of velocity streaks were observed from a geometrical perspective of turbulence structures around the circular cylinder, and compared with the characteristics of the turbulence structures in a boundary layer on a flat plate. The results showed that the velocity streak spacing and the distance between the velocity streak and the cylinder surface in the viscous length scale do not vary substantively with the radius of the cylinder, and are the same as those of the turbulent flow along a flat plate. Therefore, they can be considered geometrical characteristics of the turbulence structure independent of the cylinder radius. Moreover, the friction coefficient per pair of high- and low-speed velocity streaks is the same as that of flat-plate turbulent flow, independent of the cylinder radius, and can be regarded as a dynamical characteristic for a pair of velocity streaks. Two equations were derived based on the characteristics of wall turbulence. The characteristics of the turbulence predicted by the two formulae were consistent with the simulation results. Consequently, we showed that the wall friction coefficient and number of the velocity streak pairs, which are statistical and structural characteristics of wall turbulence, can be predicted appropriately by specifying the radius Reynolds number.
Spanwise vortex instability and the growth of secondary hairpin-like vortical structures in the wake of an oscillating foil are investigated numerically at Reynolds number 8000 in a range of chord-based Strouhal number ($0.32 \le St_c \le 0.56$). The phase-offset ($\phi$) between the heaving and pitching motion is $\phi = 90^\circ$. The wake at the lowest $St_c$ (0.32) is characterized by a single system of streamwise hairpin-like structures that evolve from the core vorticity outflux of the secondary leading edge vortex (LEV) over the foil boundary. The primary LEV features spanwise dislocations, but it does not reveal substantial changes advecting downstream. Increasing $St_c$ beyond 0.32 reveals that the transition in spanwise instability characterizes the deformation of primary LEV cores, which subsequently transforms to hairpin-like secondary structures. At higher $St_c$, stronger trailing edge vortices (TEVs) grow in close proximity to the primary LEVs, which contributes to an enhanced localized vortex compression and tilting near dislocations. This phenomenon amplifies the undulation amplitude of primary LEVs, eventually leading to vortex tearing. The larger circulation of TEVs with increasing $St_c$ provides an additional explanation for an accelerated vortex compression that coincides with a faster transition of spanwise LEV instability to secondary hairpin-like structures in the wake.
Microscopic irregularity (roughness) of bounding surfaces affects macroscopic dynamics of fluid flows. Its effect on bulk flow is usually quantified empirically by means of a roughness coefficient. A new approach, which treats rough surfaces (e.g. parallel plates) as random fields whose statistical properties can be inferred from measurements, is presented. The mapping of a random flow domain onto its deterministic counterpart, and the subsequent stochastic averaging of the transformed Stokes equations, yield expressions for the effective viscosity and roughness coefficient in terms of the statistical characteristics of the irregular geometry of the boundaries. The analytical nature of the solutions allows one to handle surface roughness characterized by short correlation lengths, a challenging feature for numerical stochastic simulations.
Among the factors identified to account for non-take-up of social benefits, there has been limited research on ‘process costs’, particularly regarding the impact of geographic access. Using Israeli data on field office openings from 1993 to 2021, this paper investigates the impact of geographic access on the take-up of the five largest social security programs in Israel. Based on staggered openings and closings of social security field offices, we find that geographic access has no significant impact on the take-up of either automatic enrollment programs, such as child allowances, or non-automatic programs, such as disability benefits. These findings suggest that the effect of geographic access on the take-up of social benefits may have been overstated in previous studies. We propose the following hypothesis to explain the surprising findings: If enhanced geographic access is driven by political favoritism, opening of new service points may lead to the misallocation of resources and, in effect, increase administrative burdens, thereby undermining rather than improving the take-up of social benefits.
In spray cleaning, a multitude of small drops, violently accelerated by a high-speed gas stream, strike a dirty surface. This process is extremely effective: very little dirt can resist it. This is true even for dirt particles whose characteristic size is less than 100 nm. Spray cleaning is classically modelled by balancing particle adhesion with either inertial stress or viscous shear near the surface, the latter being calculated using droplet size and velocity as the characteristic length and velocity. This results in dimensionless numbers that are often well below one, suggesting that the mechanical stress exerted on the surface by the drop impact that detaches the particle is not well captured. Using quantitative nanoscale measurements, we show that the remarkable efficiency of spray cleaning results from the forced spreading of each droplet on the surface, which generates an unsteady and inhomogeneous shear confined to a boundary layer entrained in the wake of the liquid–solid contact line. In the very first moments of impact, the boundary layer is extremely thin, yielding a gigantic stress: the contact line of the spreading droplets sweeps all the surface particles away. We propose a quantitative model of spray cleaning based on this unsteady surface stress, which agrees well with (i) experimental data obtained with spray droplets of $34\ \mathrm {\mu }$m mean radius impacting the surface to be cleaned at a mean velocity ranging between 30 and 70 m s$^{-1}$ and contamination by nanoparticles of varying nature and shape and (ii) data in the literature on spray cleaning.
The theme of the 2024 Business History Conference was “doing business in the public interest,” but what does it actually mean to “do business in the public interest?” This presidential address challenges the idea of shareholder primacy as the main purpose of business enterprises historically and examines various ways that business historians might approach the idea of businesses acting in a public interest. In particular, it analyzes instances in which corporations made a decision in the public interest without clear evidence that it would benefit their bottom line; cases where it would demonstrably hurt their bottom line to prioritize the public; corporations that made a decision allegedly in the public interest that actually turned out to be bad for the public interest; and corporations that made a decision that was bad for the public interest that also turned out to be bad for their own bottom line.