We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Objectives/Goals: Early childhood obesity is a major concern for Latin American children in the U.S., with gut barrier dysfunction as a key risk factor. Diet plays a role in gut development, but few studies have focused on Latin American infants. Our objective is to identify culturally relevant introductory foods that promote in vitro gut barrier development and function. Methods/Study Population: Pooled human milk (2.5 mL) from 6-month postpartum Hispanic mothers was combined with fruit and vegetable baby food products (2.5 g) and subjected to a 3-phase in vitro digestion system that simulates oral, gastric, and intestinal digestion. Digesta products were then anaerobically fermented for 24-hours using human stool inoculum, centrifuged, and filter sterilized. Intestinal epithelial cells (Caco-2, ATCC) were grown to confluence on 0.4 μm polystyrene transwell inserts using a DMEM + 10% FBS medium and allowed to differentiate for 21-days. Highly differentiated monolayers were treated with a 1:4 dilution of fermenta with medium in triplicate. The cell experiment was conducted twice. Cell layer integrity was measured using transepithelial electrical resistance (TEER) 24- and 48-hours after treatment. Results/Anticipated Results: Dietary intake data from the What We Eat in America database indicated that the top 3 fruit and vegetable exposures for infants with Mexican or Hispanic ethnicity were banana, apple, and carrot. Commercial baby food purees of these fruits and vegetables, in addition to baby foods with blueberry and spinach (Natural for Baby, Gerber Products Company) were acquired for digestion and fermentation experiments. Caco-2 cell experiments with these foods are ongoing. We expect Caco-2 monolayer incubated with fermenta from human milk and fruit or vegetables will have greater TEER values due to increased integrity of the cell layer as compared to those with breast milk alone. We also expect that exposure to fruit and vegetable fermenta will increase gene expression of tight junctions compared to exposure to media and human milk. Discussion/Significance of Impact: Using an in vitro digestion and fermentation system coupled with cell culture studies, we are identifying cellular mechanisms that link individual fruits and vegetables to gut barrier function. This will support translational work focused on mitigating obesity development in vulnerable populations.
A study was conducted to (1) determine the conditions of hydroxy-Mg interlayer formation with respect to type of clay mineral, acidity, and time; (2) evaluate the stability of this interlayer to dissolution treatments; and (3) ascertain the effects of such treatments upon the determination of clay minerals in soils and sediments. Hydroxy-Mg interlayers were formed in montmorillonite and vermiculite by adding MgCl2 and NaOH in amounts to give a wide range of pH. The resulting chloritic intergrades were examined after 10 days, 6 months, and 1 yr.
Alkaline conditions favored the formation of hydroxy magnesium interlayers in phyllosilicates. Hydroxy-Mg interlayered montmorillonite which resulted from 10 days equilibration at pH 10·4 did not expand upon solvation with ethylene glycol and exhibited practically no collapse after K-saturation and heating at 550°C. A small amount of interlayer was formed between pH 6·8 and 9·8 (10 days). In contrast, vermiculite exhibited no evidence of interlayer formation at pH values up to 9·7 (10 days). Chloritic intergrades formed at pH 10·7 did not collapse after K-saturation and heating at 300°C but did so at 550°C. Hydroxy-Mg interlayers were not formed in either mineral by using a drying method. This method apparently failed to provide the required alkaline conditions for interlayer formation.
The amount of magnesium interlayers present in the phyllosilicate systems decreased with time. The interlayers formed in vermiculite decreased more sharply than those in montmorillonite.
Sequential dissolution treatments included boiling 2 per cent Na2CO3, buffered sodium citrate-dithionite, a second citrate-dithionite treatment, and boiling NaOH. Hydroxy-Mg interlayers in montmorillonite exhibited a higher stability to sequential treatments than the interlayers formed in vermiculite. A stable 14 Å line was observed in interlayered montmorillonite after the dithionite-citrate and NaOH treatments.
The interlayers in montmorillonite showed a relatively high stability to HCl dissolution treatments. In contrast, most of the magnesium interlayer in vermiculite was removed by two HCl washings.
The reagents used in this study are sometimes used to remove coatings and cementing agents from soil surfaces prior to particle size and clay analysis. The present data show that these treatments also remove some hydroxy-Mg interlayers and produce changes in properties of clays. A proper interpretation of data for clay mineral identification and characterization must recognize these changes due to treatment.
Coronavirus disease-2019 (Covid-19) nonpharmaceutical interventions have proven effective control measures for a range of respiratory illnesses throughout the world. These measures, which include isolation, stringent border controls, physical distancing and improved hygiene also have effects on other human pathogens, including parasitic enteric diseases such as cryptosporidiosis. Cryptosporidium infections in humans are almost entirely caused by two species: C. hominis, which is primarily transmitted from human to human, and Cryptosporidium parvum, which is mainly zoonotic. By monitoring Cryptosporidium species and subtype families in human cases of cryptosporidiosis before and after the introduction of Covid-19 control measures in New Zealand, we found C. hominis was completely absent after the first months of 2020 and has remained so until the beginning of 2021. Nevertheless, C. parvum has followed its typical transmission pattern and continues to be widely reported. We conclude that ~7 weeks of isolation during level 3 and 4 lockdown period interrupted the human to human transmission of C. hominis leaving only the primarily zoonotic transmission pathway used by C. parvum. Secondary anthroponotic transmission of C. parvum remains possible among close contacts of zoonotic cases. Ongoing 14-day quarantine measures for new arrivals to New Zealand have likely suppressed new incursions of C. hominis from overseas. Our findings suggest that C. hominis may be controlled or even eradicated through nonpharmaceutical interventions.
Objective: To validate a case definition of multiple sclerosis (MS) using health administrative data and to provide the first province-wide estimates of MS incidence and prevalence for Saskatchewan, Canada. Methods: We used population-based health administrative data between January 1, 1996 and December 31, 2015 to identify individuals with MS using two potential case definitions: (1) ≥3 hospital, physician, or prescription claims (Marrie definition); (2) ≥1 hospitalization or ≥5 physician claims within 2 years (Canadian Chronic Disease Surveillance System [CCDSS] definition). We validated the case definitions using diagnoses from medical records (n=400) as the gold standard. Results: The Marrie definition had a sensitivity of 99.5% (95% confidence interval [CI] 92.3-99.2), specificity of 98.5% (95% CI 97.3-100.0), positive predictive value (PPV) of 99.5% (95% CI 97.2-100.0), and negative predictive value (NPV) of 97.5% (95% CI 94.4-99.2). The CCDSS definition had a sensitivity of 91.0% (95% CI 81.2-94.6), specificity of 99.0% (95% CI 96.4-99.9), PPV of 98.9% (95% CI 96.1-99.9), and NPV of 91.7% (95% CI 87.2-95.0). Using the more sensitive Marrie definition, the average annual adjusted incidence per 100,000 between 2001 and 2013 was 16.5 (95% CI 15.8-17.2), and the age- and sex-standardized prevalence of MS in Saskatchewan in 2013 was 313.6 per 100,000 (95% CI 303.0-324.3). Over the study period, incidence remained stable while prevalence increased slightly. Conclusion: We confirm Saskatchewan has one of the highest rates of MS in the world. Similar to other regions in Canada, incidence has remained stable while prevalence has gradually increased.
This study evaluated implications of increased bollworm problems in a 20-county area of the Texas High Plains relative to cotton yields and economic impact. Results did not indicate a serious effect of bollworms upon lint yield when insecticides were used for control. However, estimated annual reduction in farmer profit due to the bollworm for 1979-81 was over $30 million. Yields were estimated to decline about 300,000 bales without insecticide use and about 30,000 bales with insecticide use. This decline suggests potentially serious implications for the comparative economic position of cotton in this region if insecticide resistance were to develop among insect pests.
Diverse strain types of methicillin-resistant Staphylococcus aureus (MRSA) cause infections in community settings worldwide. To examine heterogeneity of spread within households and to identify common risk factors for household transmission across settings, primary data from studies conducted in New York (USA), Breda (The Netherlands), and Melbourne (Australia) were pooled. Following MRSA infection of the index patient, household members completed questionnaires and provided nasal swabs. Swabs positive for S. aureus were genotyped by spa sequencing. Poisson regression with robust error variance was used to estimate prevalence odds ratios for transmission of the clinical isolate to non-index household members. Great diversity of strain types existed across studies. Despite differences between studies, the index patient being colonized with the clinical isolate at the home visit (P < 0·01) and the percent of household members aged <18 years (P < 0·01) were independently associated with transmission. Targeted decolonization strategies could be used across geographical settings to limit household MRSA transmission.
Continual low-level exposure of sheep to the helminth Teladorsagia circumcincta elicits a temporary protective immunity, where factors in the immune abomasal mucosa prevent penetration of infective larvae, but which is essentially lost within 6 weeks of cessation of parasite challenge. Here, a proteomic approach was used to identify proteins that are differentially regulated in immune compared to naïve sheep, as potential key mediators of immunity. Six naïve sheep and 12 sheep trickle-infected with T. circumcincta were treated with anthelmintic, and the naïve (control) and 6 immune sheep were killed 7 days later. The remaining 6 sheep (immune waning) were killed 42 days after anthelmintic treatment. Abomasal tissue samples were subjected to 2D-gel electrophoresis and densitometric analysis. Selected spots (n=73) were identified by peptide mass fingerprinting and confirmatory Western blotting was carried out for 10 proteins. Spots selectively up-regulated in immune versus control, but not immune waning versus control sheep, included galectin-15 and thioredoxin, which were confirmed by Western blotting. In immune sheep, serum albumin was significantly down-regulated and albumin proteolytic cleavage fragments were increased compared to controls. Unexpectedly, albumin mRNA was relatively highly expressed in control mucosa, down-regulated in immune, and was immunolocalized to mucus-producing epithelial cells. Thus we have identified differential expression of a number of proteins following T. circumcincta trickle infection that may play a role in host protection and inhibition of parasite establishment.
A pandemic influenza A(H1N1) 2009 outbreak in a summer school affected 117/276 (42%) students. Residential social contact was associated with risk of infection, and there was no evidence for transmission associated with the classroom setting. Although the summer school had new admissions each week, which provided susceptible students the outbreak was controlled using routine infection control measures (isolation of cases, basic hygiene measures and avoidance of particularly high-risk social events) and prompt treatment of cases. This was in the absence of chemoprophylaxis or vaccination and without altering the basic educational activities of the school. Modelling of the outbreak allowed estimation of the impact of interventions on transmission. These models and follow-up surveillance supported the effectiveness of routine infection control measures to stop the spread of influenza even in this high-risk setting for transmission.
Circulation of methicillin-resistant Staphylococcus aureus (MRSA) outside hospitals could alter the impact of hospital-based control strategies. We investigated two groups of cases (each matched to controls with MRSA): 61 ‘community cases’ not in acute hospital in the year before MRSA isolation; and 21 cases with ciprofloxacin-sensitive (CipS) MRSA. Multi-locus sequence typing, spa-typing and Panton–Valentine leukocidin gene testing were performed and demographics obtained. Additional questionnaires were completed by community case GPs. Community cases comprised 6% of Oxfordshire MRSA. Three community cases had received no regular healthcare or antibiotics: one was infected with CipS. Ninety-one percent of community cases had healthcare-associated sequence type (ST)22/36; CipS MRSA cases had heterogeneous STs but many had recent healthcare exposure. A substantial minority of UK MRSA transmission may occur outside hospitals. Hospital strains are becoming ‘feral’ or persisting in long-term carriers in the community with regular healthcare contacts; those with recent healthcare exposure may nevertheless acquire non-hospital epidemic MRSA strains in the community.
The transforming growth factor-β (TGF-β) gene family regulates critical processes in animal development, and plays a crucial role in regulating the mammalian immune response. We aimed to identify TGF-β homologues from 2 laboratory model nematodes (Heligmosomoides polygyrus and Nippostrongylus brasiliensis) and 2 major parasites of ruminant livestock (Haemonchus contortus and Teladorsagia circumcincta). Parasite cDNA was used as a template for gene-specific PCR and RACE. Homologues of the TGH-2 subfamily were isolated, and found to differ in length (301, 152, 349 and 305 amino acids respectively), with variably truncated N-terminal pre-proteins. All contained conserved C-terminal active domains (>85% identical over 115 amino acids) containing 9 cysteine residues, as in C. elegans DAF-7, Brugia malayi TGH-2 and mammalian TGF-β. Surprisingly, only the H. contortus homologue retained a conventional signal sequence, absent from shorter proteins of other species. RT-PCR assays of transcription showed that in H. contortus and N. brasiliensis expression was maximal in the infective larval stage, and very low in adult worms. In contrast, in H. polygyrus and T. circumcincta, tgh-2 transcription is higher in adults than infective larvae. The molecular evolution of this gene family in parasitic nematodes has diversified the pre-protein and life-cycle expression patterns of TGF-β homologues while conserving the structure of the active domain.
Proteolytic enzymes present in extracts of third (L3) and fourth (L4) stage larvae and adults of the cattle nematode Ostertagia ostertagi were defined on the basis of pH optima and proteinase inhibitor sensitivity in spectrophotometric assays using azocasein and elastin-orcein as protein substrates. Evidence that different classes of proteinases are expressed in a stage specific manner was provided by the contrasting pH optima and inhibitor sensitivities shown by the enzymes in the different parasite stages. Stage specificity was confirmed by gelatin-substrate analysis. In addition, proteolytic activity was sought in the excretory/secretory products (ES) of the L4 following simple in vitro culture. Contrasting pH and inhibitor sensitivities as well as gelatin-substrate analysis showed that different proteinases were present in somatic L4 extracts and L4 ES products. The secreted proteinases may be useful targets for serodiagnosis or vaccination.
Proteinases released during in vitro maintenance of third (L3) and fourth larval stage (L4) and adult Teladorsagia circumcincta (formerly Ostertagia circumcincta), an ovine abomasal nematode parasite, were characterized on the basis of pH optima, molecular size and specific proteinase inhibitor sensitivity. Enzyme activity was maximal at alkaline pH and stage-specific release was demonstrated. Proteinases released by the adult parasite degraded a variety of protein substrates including plasminogen, albumin and haemoglobin, in a pH-dependent manner. At alkaline pH fibrinogen degradation was restricted to the α and β peptide chains although the γ peptide chain was also degraded at acidic pH. Inhibitor sensitivity studies indicated that degradation was predominantly due to metalloproteinases although aspartyl proteinase activity was indicated at acidic pH.
Adult Trichinella spiralis were maintained in vitro using defined media and the material excreted/secreted (ES) during this time examined for proteolytic enzyme (proteinase) activity using an azocasein assay and gelatin-substrate gels. Several discrete proteinases in the size range 14–100 kDa were observed with optimal activity at pH 7·5. The use of a class-differentiating panel of proteinase inhibitors indicated that serine proteinases were predominant although some inhibition was evident in the presence of cysteine and metalloproteinase inhibitors. Of a panel of potential natural protein substrates tested, ES proteinases only degraded fibrinogen and plasminogen and degradation was, in part, susceptible to the action of serine, cysteine and aspartyl proteinase inhibitors. In addition, antibody harvested from immune but not normal mice inhibited ES proteinase activity, an observation of relevance to the immunobiology of Trichinosis.
The degradation of several protein substrates, including the blood proteins haemoglobin, albumin and fibrinogen, by proteinases present in extracts of adult Haemonchus contortus was examined over a broad pH range. These proteinases were further characterized on the basis of substrate specificity, inhibitor sensitivity and molecular size by spectrophotometric and substrate gel analysis. The majority of the proteinases capable of degrading the blood proteins tested were active at acidic pH and could be ascribed to the cysteine proteinase class. In addition, evidence is presented that these proteinases are differentially recognized and inhibited by immune sera and that parasites capable of withstanding protective host immune responses exhibit modified expression of proteinases.
The presence of superoxide dismutase (SOD) activity in the bovine lungworm Dictyocaulus viviparus was examined using the xanthine–xanthine oxidase assay system and by non-denaturing PAGE followed by specific enzyme staining. High levels of activity were detected in excretory–secretory (ES) products of adult worms and in soluble extracts of both the L3 and adult stages of the parasite. Stage-specific and ES-specific activities were indicated by differences in SOD isoenzyme profiles between adult and larval parasite extracts and between adult extract and ES products, with a fast migrating activity being specific to ES products. All isoenzymes were sensitive to cyanide, indicating copper/zinc dependency. The antigenicity of ES SOD was demonstrated by a reduction in SOD activity in both the chemical assay and non-denaturing PAGE following incubation of parasite ES products with IgG antibody purified from serum of infected or vaccinated bovine hosts. The high level of SOD activity released by adult D. viviparus may be a reflection of the problems faced by a parasite occupying an oxygen-rich environment. Antibody inhibition of SOD may, therefore, be an important target of protective immunity.