We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book explores groundbreaking scientific perspectives on mind and brain, challenging traditional models that view cognition solely through the lens of computation. Featuring contributions from leading thinkers across behavioral sciences, cognitive sciences, philosophy of mind, psychology, and neurosciences, it highlights innovative approaches that emphasize the dynamic interplay of perception, action, and adaptation in an ever-changing world. Readers will discover cutting-edge research on how brains, bodies, and environments are interconnected, and how this interconnectedness drives organismal adaptability, creativity, and resilience. From the role of embodied cognition to the importance of social and environmental contexts, this book offers a comprehensive survey of emerging theories that redefine how we understand mind and behavior. Accessible yet thought-provoking, this volume is essential for those curious about how modern science is reshaping our understanding of cognition, from researchers and students to readers seeking fresh insights into how we navigate our complex, dynamic world.
Recent changes to US research funding are having far-reaching consequences that imperil the integrity of science and the provision of care to vulnerable populations. Resisting these changes, the BJPsych Portfolio reaffirms its commitment to publishing mental science and advancing psychiatric knowledge that improves the mental health of one and all.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
Edited by
David Mabey, London School of Hygiene and Tropical Medicine,Martin W. Weber, World Health Organization,Moffat Nyirenda, London School of Hygiene and Tropical Medicine,Dorothy Yeboah-Manu, Noguchi Memorial Institute for Medical Research, University of Ghana,Jackson Orem, Uganda Cancer Institute, Kampala,Laura Benjamin, University College London,Michael Marks, London School of Hygiene and Tropical Medicine,Nicholas A. Feasey, Liverpool School of Tropical Medicine
Asthma is one of the commonest non-communicable diseases. The cause is unknown, but genetic and environmental factors are implicated. Asthma is characterized by episodic wheezing, coughing and breathlessness, reflecting airway inflammation and intermittent reversible airflow obstruction. It is seen worldwide but at a higher prevalence in more affluent settings. Although generally treatable with regular inhaled corticosteroids and as-needed bronchodilator (reliever) inhalers, people with asthma suffer considerable morbidity and deaths continue to occur when treatment is not taken properly or is unavailable.
Attention-deficit hyperactivity disorder (ADHD) is commonly considered a neurodevelopmental disorder, with symptoms present before 12 years of age. Increasingly, adults who have no evidence of impairment in childhood are seeking treatment for ADHD. In this Editorial, we propose that psychiatry considers conceptual changes to better understand impairment and distress caused by inattention and disorganisation in adulthood.
The nature and extent of interactions between the distant regions and cultures of Mesoamerica remain open to much debate. Close economic and political ties developed between Teotihuacan and the lowland Maya during the Early Classic period (AD 250–550), yet the relationship between these cultures continues to perplex scholars. This article presents an elaborately painted altar from an elite residential group at the lowland Maya centre of Tikal, Guatemala. Dating to the fifth century AD, the altar is unique in its display of Teotihuacan architectural and artistic forms, adding to evidence not only for cultural influence during this period, but also for an active Teotihuacan presence at Tikal.
To improve early intervention and personalise treatment for individuals early on the psychosis continuum, a greater understanding of symptom dynamics is required. We address this by identifying and evaluating the movement between empirically derived attenuated psychotic symptomatic substates—clusters of symptoms that occur within individuals over time.
Methods
Data came from a 90-day daily diary study evaluating attenuated psychotic and affective symptoms. The sample included 96 individuals aged 18–35 on the psychosis continuum, divided into four subgroups of increasing severity based on their psychometric risk of psychosis, with the fourth meeting ultra-high risk (UHR) criteria. A multilevel hidden Markov modelling (HMM) approach was used to characterise and determine the probability of switching between symptomatic substates. Individual substate trajectories and time spent in each substate were subsequently assessed.
Results
Four substates of increasing psychopathological severity were identified: (1) low-grade affective symptoms with negligible psychotic symptoms; (2) low levels of nonbizarre ideas with moderate affective symptoms; (3) low levels of nonbizarre ideas and unusual thought content, with moderate affective symptoms; and (4) moderate levels of nonbizarre ideas, unusual thought content, and affective symptoms. Perceptual disturbances predominantly occurred within the third and fourth substates. UHR individuals had a reduced probability of switching out of the two most severe substates.
Conclusions
Findings suggest that individuals reporting unusual thought content, rather than nonbizarre ideas in isolation, may exhibit symptom dynamics with greater psychopathological severity. Individuals at a higher risk of psychosis exhibited persistently severe symptom dynamics, indicating a potential reduction in psychological flexibility.
Channel coding lies at the heart of digital communication and data storage. Fully updated, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This new edition includes over 50 new end-of-chapter problems and new figures and worked examples throughout. The authors emphasize the practical approach and present clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes, detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, product codes as well as polar codes for error correction and detection, providing a one-stop resource for classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design.
Field studies were conducted on certified organic land in Lafayette and Vincennes, IN, in 2023 to determine the impact of different between-row weed control methods on weed suppression and sweetpotato yield. Between-row treatments consisted of organic buckwheat (108 kg ha−1) broadcast seeded immediately after sweetpotato transplanting followed by silage tarping from 3 wk after transplanting (WATr) through harvest, organic buckwheat (108 kg ha−1) broadcast seeded 3 WATr and terminated 7 WATr, and cultivation as a grower standard. Weed density at 6 WATr was 0, 184, and 162 plants m−2 for the silage tarping, living mulch buckwheat, and cultivation treatments, respectively. Total yield was 11,048 kg ha−1 for the living mulch buckwheat, 19,792 kg ha−1 for the cultivation, and 17,814 kg ha−1 for the tarping treatments. Tarping effectively suppressed weeds and produced sweetpotato yields comparable to cultivation, indicating the potential for use by organic growers. When buckwheat was grown between rows 3 to 7 WATr, sweetpotato yield was lower than it was with tarping and cultivation. These results suggest that researchers should be evaluating tarps for small-acreage farmers as a weed management strategy.
The Ediacaran/Cambrian transition (ECT; ~575–500 Ma) captures the early diversification of animals, including the oldest crown-group taxa of most major animal phyla alive today. Key to understanding the drivers underneath the ECT macroevolutionary patterns are the interactions of animals with one another and their environment, and how these interactions scale up to global diversity patterns. Understanding the ecology of ECT organisms is enabled by the abundance of Lagerstätten over this time period, with a relatively large proportion of soft-bodied organisms preserved, often within the communities in which they lived. Here, we review our understanding of organismal, community, and macroecology of the ECT, and how these different scales of ecological analyses relate to the macroevolutionary diversification patterns we see over this 75 Myr time period. Across all ecological scales, we find clear trends, starting with stochastic ecosystem dynamics dominated by generalist taxa in the first Ediacaran communities, to more structured, niche-driven specialist dynamics by Cambrian Epoch 2. These trends are reflected in organism functional morphology, the complexity and strength of organisms’ interactions within their communities, and large-scale metacommunity, biogeographic, and biodiversity patterns. Yet there is often a time delay between the origination of a new type of ecological interaction and when it is observed to impact the ecosystem as a whole. As such, while many modern ecological innovations were in place by the end of the Cambrian, the knock-on effects and complexity of these interactions continued to build up throughout the Phanerozoic, leading to the complex biosphere we have today.
Although much research confirms a gender gap in political science and its subfields internationally, only recently have scholars analyzed country-specific conditions for women within the field. Our study contributes to this national-level examination of gender diversity and inclusion by examining the extent to which a gender gap within the subfield of security studies, identified in the international literature, also is present in Canada. Research on gender representation and gendered experiences mostly centers on the academic workforce in the United States. However, in this article, we share the results of a multi-method investigation into the state of gender diversity in Canadian security studies—a national context in which the university sector has signaled a strong commitment to diversity and the government has actively promoted gender equality in official policy. By analyzing data collected from an online survey of security studies scholars in Canada and a document analysis of Canadian security-related journals and selected security studies syllabi, this contribution provides evidence that women are underrepresented in Canadian security studies and experience the subfield in less positive ways. We discuss the implications of these findings for the security studies subfield and suggest paths for future research and key recommendations.
A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are compared through the analysis of data sets famous in the equating literature. Also, the classical percentile-rank, linear, and mean equating models are each proven to be a special case of a Bayesian model under a highly-informative choice of prior distribution.
The aim of this paper is to characterise the internal structures and ice-flow history of representative valley glaciers in Svalbard and infer from them dynamic changes over centennial timescales. Three polythermal and one cold valley glacier are investigated using field- and laboratory-based techniques and remote sensing. Structures along flow-unit boundaries indicate that ice-flow configuration in three of the glaciers has remained stable spanning the residence time of the ice. Deformation of a flow-unit boundary in the fourth reveals an ice-flow instability, albeit one that has been maintained since its most recent advance. Macro-crystallographic, sedimentological and isotopic analyses indicate that basal ice is elevated to the glacier surface, as shown by entrained sediments and enrichment in heavy isotopes. In narrow zones of enhanced cumulative strain, new ice facies are generated through dynamic recrystallisation. The surface density of longitudinal foliation is shown to represent the relative magnitude of cumulative strain. Geometric similarities between flow-unit boundaries in Svalbard valley glaciers and larger scale longitudinal surface structures in ice sheets suggest that deformation mechanisms are common to both.
Vallisneria × pseudorosulata S. Fujii & M. Maki is an invasive aquatic weed that has recently become a major issue within the U.S. Southeast. Vallisneria × pseudorosulata is a hybrid between two nonnative eelgrass species (Vallisneria spiralis L. and Vallisneria denseserrulata Makino) and has rapidly overtaken water bodies in Tennessee, Alabama, and Florida. This hybrid can reproduce rapidly through offshoot formation and floating propagules capable of drifting large distances before establishing. Vallisneria × pseudorosulata has been previously found in Japan and is thought to have been introduced in the United States by the aquarium trade or through dumping.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.