We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine the density of integral binary forms of given degree that have squarefree discriminant, proving for the first time that the lower density is positive. Furthermore, we determine the density of integral binary forms that cut out maximal orders in number fields. The latter proves, in particular, an ‘arithmetic Bertini theorem’ conjectured by Poonen for ${\mathbb {P}}^1_{\mathbb {Z}}$.
Our methods also allow us to prove that there are $\gg X^{1/2+1/(n-1)}$ number fields of degree n having associated Galois group $S_n$ and absolute discriminant less than X, improving the best previously known lower bound of $\gg X^{1/2+1/n}$.
Finally, our methods correct an error in and thus resurrect earlier (retracted) results of Nakagawa on lower bounds for the number of totally unramified $A_n$-extensions of quadratic number fields of bounded discriminant.
We prove an improvement on Schmidt’s upper bound on the number of number fields of degree n and absolute discriminant less than X for $6\leq n\leq 94$. We carry this out by improving and applying a uniform bound on the number of monic integer polynomials, having bounded height and discriminant divisible by a large square, that we proved in a previous work [7].
Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either $X_{\overline {K}}$ has infinitely many rational curves or X has infinitely many unirational specialisations.
Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K.
In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/C(E)$ of the discriminant divided by the conductor is squarefree; and second, the set of elliptic curves $E$ such that the Szpiro quotient$\beta _E:=\log |\Delta (E)|/\log (C(E))$ is less than $7/4$. Both these families are conjectured to contain a positive proportion of elliptic curves, when ordered by conductor. Our main results determine asymptotics for both these families, when ordered by conductor. Moreover, we prove that the average size of the $2$-Selmer groups of elliptic curves in the first family, again when these curves are ordered by their conductors, is $3$. The key new ingredients necessary for the proofs are ‘uniformity estimates’, namely upper bounds on the number of elliptic curves with bounded height, whose discriminants are divisible by high powers of primes.
We study various families of Artin $L$-functions attached to geometric parametrizations of number fields. In each case we find the Sato–Tate measure of the family and determine the symmetry type of the distribution of the low-lying zeros.
In this paper, we consider the family of hyperelliptic curves over $\mathbb{Q}$ having a fixed genus $n$ and a marked rational non-Weierstrass point. We show that when $n\geqslant 9$, a positive proportion of these curves have exactly two rational points, and that this proportion tends to one as $n$ tends to infinity. We study rational points on these curves by first obtaining results on the 2-Selmer groups of their Jacobians. In this direction, we prove that the average size of the 2-Selmer groups of the Jacobians of curves in our family is bounded above by 6, which implies a bound of $5/2$ on the average rank of these Jacobians. Our results are natural extensions of Poonen and Stoll [Most odd degree hyperelliptic curves have only one rational point, Ann. of Math. (2) 180 (2014), 1137–1166] and Bhargava and Gross [The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point, in Automorphic representations and$L$-functions, Tata Inst. Fundam. Res. Stud. Math., vol. 22 (Tata Institute of Fundamental Research, Mumbai, 2013), 23–91], where the analogous results are proved for the family of hyperelliptic curves with a marked rational Weierstrass point.
We show how the Selberg $\Lambda ^2$-sieve can be used to obtain power saving error terms in a wide class of counting problems which are tackled using the geometry of numbers. Specifically, we give such an error term for the counting function of $S_5$-quintic fields.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.