We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The dynamic model of the distributed propulsion vehicle faces significant challenges due to several factors. The primary difficulties arise from the strong coupling between multiple power units and aerodynamic rudder surfaces, the interaction between thrust and vehicle dynamics, and the complexity of the aerodynamic model, which includes high-dimensional and high-order variables. To address these challenges, wind tunnel tests are conducted to analyse the aerodynamic characteristics and identify variables affecting the aerodynamic coefficients. Subsequently, a deep neural network is employed to investigate the influence of the power system and aerodynamic rudder on the aerodynamic coefficients. Based on these findings, a multi-dynamic coupled aerodynamic model is developed. Furthermore, a control-oriented nonlinear dynamics model for the distributed propulsion vehicle is established, and a flight controller is designed. Finally, closed-loop simulations for the climb, descent and turn phases are performed, validating the effectiveness of the established model.
We present the Pilot Survey Phase 2 data release for the Wide-field ASKAP L-band Legacy All-sky Blind surveY (WALLABY), carried-out using the Australian SKA Pathfinder (ASKAP). We present 1760 H i detections (with a default spatial resolution of 30′′) from three pilot fields including the NGC 5044 and NGC 4808 groups as well as the Vela field, covering a total of $\sim 180$ deg$^2$ of the sky and spanning a redshift up to $z \simeq 0.09$. This release also includes kinematic models for over 126 spatially resolved galaxies. The observed median rms noise in the image cubes is 1.7 mJy per 30′′ beam and 18.5 kHz channel. This corresponds to a 5$\sigma$ H i column density sensitivity of $\sim 9.1\times10^{19}(1 + z)^4$ cm$^{-2}$ per 30′′ beam and $\sim 20$ km s$^{-1}$ channel and a 5$\sigma$ H i mass sensitivity of $\sim 5.5\times10^8 (D/100$ Mpc)$^{2}$ M$_{\odot}$ for point sources. Furthermore, we also present for the first time 12′′ high-resolution images (“cut-outs”) and catalogues for a sub-sample of 80 sources from the Pilot Survey Phase 2 fields. While we are able to recover sources with lower signal-to-noise ratio compared to sources in the Public Data Release 1, we do note that some data quality issues still persist, notably, flux discrepancies that are linked to the impact of side lobes associated with the dirty beams due to inadequate deconvolution. However, in spite of these limitations, the WALLABY Pilot Survey Phase 2 has already produced roughly a third of the number of HIPASS sources, making this the largest spatially resolved H i sample from a single survey to date.
This paper explores the feasibility of a break-even-class mirror referred to as BEAM (break-even axisymmetric mirror): a neutral-beam-heated simple mirror capable of thermonuclear-grade parameters and $Q\sim 1$ conditions. Compared with earlier mirror experiments in the 1980s, BEAM would have: higher-energy neutral beams, a larger and denser plasma at higher magnetic field, both an edge and a core and capabilities to address both magnetohydrodynamic and kinetic stability of the simple mirror in higher-temperature plasmas. Axisymmetry and high-field magnets make this possible at a modest scale enabling a short development time and lower capital cost. Such a $Q\sim 1$ configuration will be useful as a fusion technology development platform, in which tritium handling, materials and blankets can be tested in a real fusion environment, and as a base for development of higher-$Q$ mirrors.
Due to the environmental problems derived from the use of common surfactants as modifiers for clay mineral adsorbents to mitigate mycotoxin contamination of animal feeds, finding non-toxic modifiers to prepare safe and efficient adsorbents is necessary. The objective of the present study was, therefore, to modify acidified palygorskite with polyhexamethylene biguanide (PHMB) to obtain antibacterial polyhexamethylene biguanide/palygorskite (PHMB/Plg) composites for the removal of zearalenone, a common mycotoxin. The PHMB/Plg composites were characterized and analyzed by X-ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy, and isothermal nitrogen adsorption analysis. The adsorption properties of the composites with respect to zearalenone and their antibacterial activity with respect to Escherichia coli and Staphylococcus aureus were studied. The results indicated that the hydrophobicity of palygorskite was enhanced after modification with PHMB, which could effectively improve the adsorption property of palygorskite toward the nonpolar zearalenone molecules. The adsorption capacity of PHMB/Plg increased with increasing amounts of polyhexamethylene biguanide and increasing pH. The adsorption data were described well by pseudo-second order kinetics and by the Langmuir adsorption model. The maximum adsorption capacity was 2777 μg/g. When the amount of PHMB added increased to 15 wt.%, the composites obtained exhibited good antibacterial performance, and the minimum inhibitory concentrations for Escherichia coli and Staphylococcus aureus were both at 2.5 mg/mL.
Major depressive disorder (MDD) contributes to suicide risk. Treating MDD effectively is considered a key suicide prevention intervention. Yet many patients with MDD do not respond to their initial medication and require a ‘next-step’. The relationship between next-step treatments and suicidal thoughts and behaviors is uncharted.
Method
The VA Augmentation and Switching Treatments for Depression trial randomized 1522 participants to one of three next-step treatments: Switching to Bupropion, combining with Bupropion, and augmenting with Aripiprazole. In this secondary analysis, features associated with lifetime suicidal ideation (SI) and attempts (SA) at baseline and current SI during treatment were explored.
Results
Compared to those with SI only, those with lifetime SI + SA were more likely to be female, divorced, or separated, unemployed; and to have experienced more childhood adversity. They had a more severe depressive episode and were more likely to respond to ‘next-step’ treatment. The prevalence of SI decreased from 46.5% (694/1492) at baseline to 21.1% (315/1492) at end-of-treatment. SI during treatment was associated with baseline SI; low positive mental health, more anxiety, greater severity and longer duration of current MDD episode; being male and White; and treatment with S-BUP or C-BUP as compared to A-ARI.
Conclusion
SI declines for most patients during next-step medication treatments. But about 1 in 5 experienced emergent or worsening SI during treatment, so vigilance for suicide risk through the entire 12-week acute treatment period is necessary. Treatment selection may affect the risk of SI.
Derive and externally validate a prediction model for pneumococcal urinary antigen test (pUAT) positivity.
Methods:
Retrospective cohort study of adults admitted with community-acquired pneumonia (CAP) to 177 U.S. hospitals in the Premier Database (derivation and internal validation samples) or 12 Cleveland Clinic hospitals (external validation sample). We utilized multivariable logistic regression to predict pUAT positivity in the derivation dataset, followed by model performance evaluation in both validation datasets. Potential predictors included demographics, comorbidities, clinical findings, and markers of disease severity.
Results:
Of 198,130 Premier patients admitted with CAP, 27,970 (14.1%) underwent pUAT; 1962 (7.0%) tested positive. The strongest predictors of pUAT positivity were history of pneumococcal infection in the previous year (OR 6.99, 95% CI 4.27–11.46), severe CAP on admission (OR 1.76, 95% CI 1.56–1.98), substance abuse (OR 1.57, 95% CI 1.27–1.93), smoking (OR 1.23, 95% CI 1.09–1.39), and hyponatremia (OR 1.35, 95% CI 1.17–1.55). Negative predictors included IV antibiotic use in past year (OR 0.65, 95% CI 0.52–0.82), congestive heart failure (OR 0.72, 95% CI 0.63–0.83), obesity (OR 0.71, 95% CI 0.60–0.85), and admission from skilled nursing facility (OR 0.60, 95% CI 0.45–0.78). Model c-statistics were 0.60 and 0.67 in the internal and external validation cohorts, respectively. Compared to guideline-recommended testing of severe CAP patients, our model would have detected 23% more cases with 5% fewer tests.
Conclusion:
Readily available data can identify patients most likely to have a positive pUAT. Our model could be incorporated into automated clinical decision support to improve test efficiency and antimicrobial stewardship.
The Wisconsin high-temperature superconductor axisymmetric mirror experiment (WHAM) will be a high-field platform for prototyping technologies, validating interchange stabilization techniques and benchmarking numerical code performance, enabling the next step up to reactor parameters. A detailed overview of the experimental apparatus and its various subsystems is presented. WHAM will use electron cyclotron heating to ionize and build a dense target plasma for neutral beam injection of fast ions, stabilized by edge-biased sheared flow. At 25 keV injection energies, charge exchange dominates over impact ionization and limits the effectiveness of neutral beam injection fuelling. This paper outlines an iterative technique for self-consistently predicting the neutral beam driven anisotropic ion distribution and its role in the finite beta equilibrium. Beginning with recent work by Egedal et al. (Nucl. Fusion, vol. 62, no. 12, 2022, p. 126053) on the WHAM geometry, we detail how the FIDASIM code is used to model the charge exchange sources and sinks in the distribution function, and both are combined with an anisotropic magnetohydrodynamic equilibrium solver method to self-consistently reach an equilibrium. We compare this with recent results using the CQL3D code adapted for the mirror geometry, which includes the high-harmonic fast wave heating of fast ions.
This paper studies control function (CF) approaches in endogenous threshold regression where the threshold variable is allowed to be endogenous. We first use a simple example to show that the structural threshold regression (STR) estimator of the threshold point in Kourtellos, Stengos and Tan (2016, Econometric Theory 32, 827–860) is inconsistent unless the endogeneity level of the threshold variable is low compared to the threshold effect. We correct the CF in the STR estimator to generate our first CF estimator using a method that extends the two-stage least squares procedure in Caner and Hansen (2004, Econometric Theory 20, 813–843). We develop our second CF estimator which can be treated as an extension of the classical CF approach in endogenous linear regression. Both these approaches embody threshold effect information in the conditional variance beyond that in the conditional mean. Given the threshold point estimates, we propose new estimates for the slope parameters. The first is a by-product of the CF approach, and the second type employs generalized method of moment (GMM) procedures based on two new sets of moment conditions. Simulation studies, in conjunction with the limit theory, show that our second CF estimator and confidence interval for the threshold point together with the associated second GMM estimator and confidence interval for the slope parameter dominate the other methods. We further apply the new estimation methodology to an empirical application from international trade to illustrate its usefulness in practice.
To determine whether a structured OPAT program supervised by an infectious disease physician and led by an OPAT nurse decreased hospital readmission rates and OPAT-related complications and whether it affected clinical cure. We also evaluated predictors of readmission while receiving OPAT.
Patients:
A convenience sample of 428 patients admitted to a tertiary-care hospital in Chicago, Illinois, with infections requiring intravenous antibiotic therapy after hospital discharge.
Methods:
In this retrospective, quasi-experimental study, we compared patients discharged on intravenous antimicrobials from an OPAT program before and after implementation of a structured ID physician and nurse-led OPAT program. The preintervention group consisted of patients discharged on OPAT managed by individual physicians without central program oversight or nurse care coordination. All-cause and OPAT-related readmissions were compared using the χ2 test. Factors associated with readmission for OPAT-related problems at a significance level of P < .10 in univariate analysis were eligible for testing in a forward, stepwise, multinomial, logistic regression to identify independent predictors of readmission.
Results:
In total, 428 patients were included in the study. Unplanned OPAT-related hospital readmissions decreased significantly after implementation of the structured OPAT program (17.8% vs 7%; P = .003). OPAT-related readmission reasons included infection recurrence or progression (53%), adverse drug reaction (26%), or line-associated issues (21%). Independent predictors of hospital readmission due to OPAT-related events included vancomycin administration and longer length of outpatient therapy. Clinical cure increased from 69.8% before the intervention to 94.9% after the intervention (P < .001).
Conclusion:
A structured ID physician and nurse-led OPAT program was associated with a decrease in OPAT-related readmissions and improved clinical cure.
The shape of emission lines in the optical spectra of star-forming galaxies reveals the kinematics of the diffuse gaseous component. We analyse the shape of prominent emission lines in a sample of
$\sim$
53000 star-forming galaxies from the Sloan Digital Sky Survey, focusing on departures from gaussianity. Departures from a single gaussian profile allow us to probe the motion of gas and to assess the role of outflows. The sample is divided into groups according to their stellar velocity dispersion and star formation rate (SFR). The spectra within each group are stacked to improve the signal-to-noise ratio of the emission lines, to remove individual signatures, and to enhance the effect of SFR on the shapes of the emission lines. The moments of the emission lines, including kurtosis and skewness, are determined. We find that most of the emission lines in strong star-forming systems unequivocally feature negative kurtosis. This signature is present in
$\mathrm{H}\unicode{x03B2}$
,
$\mathrm{H}\unicode{x03B1}$
, [N ii], and [S ii] in massive galaxies with high SFRs. We attribute it as evidence of radial outflows of ionised gas driven by the star formation of the galaxies. Also, most of the emission lines in low-mass systems with high SFRs feature negative skewness, and we interpret it as evidence of dust obscuration in the galactic disk. These signatures are however absent in the [O iii] line, which is believed to trace a different gas component. The observed trend is significantly stronger in face-on galaxies, indicating that star formation drives the outflows along the galactic rotation axis, presumably the path of least resistance. The data suggest that outflows driven by star formation exert accumulated impacts on the interstellar medium, and the outflow signature is more evident in older galaxies as they have experienced a longer total duration of star formation.
To derive and validate a model for risk of resistance to first-line community-acquired pneumonia (CAP) therapy.
Design:
We developed a logistic regression prediction model from a large multihospital discharge database and validated it versus the Drug Resistance in Pneumonia (DRIP) score in a holdout sample and another hospital system outside that database. Resistance to first-line CAP therapy (quinolone or third generation cephalosporin plus macrolide) was based on blood or respiratory cultures.
Setting:
This study was conducted using data from 177 Premier Healthcare database hospitals and 11 Cleveland Clinic hospitals.
Participants:
Adults hospitalized for CAP.
Exposure:
Risk factors for resistant infection.
Results:
Among 138,762 eligible patients in the Premier database, 12,181 (8.8%) had positive cultures and 5,200 (3.8%) had organisms resistant to CAP therapy. Infection with a resistant organism in the previous year was the strongest predictor of resistance; markers of acute illness (eg, receipt of mechanical ventilation or vasopressors) and chronic illness (eg, pressure ulcer, paralysis) were also associated with resistant infections. Our model outperformed the DRIP score with a C-statistic of 0.71 versus 0.63 for the DRIP score (P < .001) in the Premier holdout sample, and 0.65 versus 0.58 (P < .001) in Cleveland Clinic hospitals. Clinicians at Premier facilities used broad-spectrum antibiotics for 20%–30% of patients. In discriminating between patients with and without resistant infections, physician judgment slightly outperformed the DRIP instrument but not our model.
Conclusions:
Our model predicting infection with a resistant pathogen outperformed both the DRIP score and physician practice in an external validation set. Its integration into practice could reduce unnecessary use of broad-spectrum antibiotics.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Virtual reality has emerged as a unique educational modality for medical trainees. However, incorporation of virtual reality curricula into formal training programmes has been limited. We describe a multi-centre effort to develop, implement, and evaluate the efficacy of a virtual reality curriculum for residents participating in paediatric cardiology rotations.
Methods:
A virtual reality software program (“The Stanford Virtual Heart”) was utilised. Users are placed “inside the heart” and explore non-traditional views of cardiac anatomy. Modules for six common congenital heart lesions were developed, including narrative scripts. A prospective case–control study was performed involving three large paediatric residency programmes. From July 2018 to June 2019, trainees participating in an outpatient cardiology rotation completed a 27-question, validated assessment tool. From July 2019 to February 2020, trainees completed the virtual reality curriculum and assessment tool during their cardiology rotation. Qualitative feedback on the virtual reality experience was also gathered. Intervention and control group performances were compared using univariate analyses.
Results:
There were 80 trainees in the control group and 52 in the intervention group. Trainees in the intervention group achieved higher scores on the assessment (20.4 ± 2.9 versus 18.8 ± 3.8 out of 27 questions answered correctly, p = 0.01). Further analysis showed significant improvement in the intervention group for questions specifically testing visuospatial concepts. In total, 100% of users recommended integration of the programme into the residency curriculum.
Conclusions:
Virtual reality is an effective and well-received adjunct to clinical curricula for residents participating in paediatric cardiology rotations. Our results support continued virtual reality use and expansion to include other trainees.
Bloodstream infections (BSIs) are a frequent cause of morbidity in patients with acute myeloid leukemia (AML), due in part to the presence of central venous access devices (CVADs) required to deliver therapy.
Objective:
To determine the differential risk of bacterial BSI during neutropenia by CVAD type in pediatric patients with AML.
Methods:
We performed a secondary analysis in a cohort of 560 pediatric patients (1,828 chemotherapy courses) receiving frontline AML chemotherapy at 17 US centers. The exposure was CVAD type at course start: tunneled externalized catheter (TEC), peripherally inserted central catheter (PICC), or totally implanted catheter (TIC). The primary outcome was course-specific incident bacterial BSI; secondary outcomes included mucosal barrier injury (MBI)-BSI and non-MBI BSI. Poisson regression was used to compute adjusted rate ratios comparing BSI occurrence during neutropenia by line type, controlling for demographic, clinical, and hospital-level characteristics.
Results:
The rate of BSI did not differ by CVAD type: 11 BSIs per 1,000 neutropenic days for TECs, 13.7 for PICCs, and 10.7 for TICs. After adjustment, there was no statistically significant association between CVAD type and BSI: PICC incident rate ratio [IRR] = 1.00 (95% confidence interval [CI], 0.75–1.32) and TIC IRR = 0.83 (95% CI, 0.49–1.41) compared to TEC. When MBI and non-MBI were examined separately, results were similar.
Conclusions:
In this large, multicenter cohort of pediatric AML patients, we found no difference in the rate of BSI during neutropenia by CVAD type. This may be due to a risk-profile for BSI that is unique to AML patients.
The aim of this study was to assess which machine, Radixact or CyberKnife, can deliver better treatment for lung and prostate stereotactic body radiation therapy (SBRT) with the use of Synchrony® real-time motion tracking system. Ten and eight patients treated with lung and prostate SBRT, respectively, using the CyberKnife system were selected for the assessment. For each patient, a retrospective Radixact plan was created and compared with the original CyberKnife plan. There was no statistically significant difference in the new conformity index of the Radixact plans and that of the Cyberknife plans in both lung and prostate SBRT. The average homogeneity index in the Radixact plans was better in both lung and prostate SBRT with statistical significance (p = 0·04 for lung and p = 0·02 for prostate). In lung SBRT, the dose to lungs was lower in Cyberknife plans (p = 0·002). In prostate SBRT, there was no statistically significant difference in organs at risk sparing between Cyberknife plans and Radixact plans. In conclusion, CyberKnife was better in lung SBRT while Radixact was better in prostate SBRT.
Clostridioides difficile infection (CDI) is the most common cause of gastroenteritis, and community-acquired pneumonia (CAP) is the most common infection treated in hospitals. American Thoracic Society (ATS)/Infectious Diseases Society of America (IDSA) CAP guidelines recommend empiric therapy with a respiratory fluoroquinolone or cephalosporin plus macrolide combination, but the CDI risk of these regimens is unknown. We examined the association between each antibiotic regimen and the development of hospital-onset CDI.
Methods:
We conducted a retrospective cohort study using data from 638 US hospitals contributing administrative including 177 also contributing microbiologic data to Premier, Inc. We included adults admitted with pneumonia and discharged from July 2010 through June 2015 with a pneumonia diagnosis code who received ≥3 days of either empiric regimen. Hospital-onset CDI was defined by a diagnosis code not present on admission and positive laboratory test on day 4 or later or readmission for CDI. Mixed propensity-weighted multiple logistic regression was used to estimate the associations of CDI with antibiotic regimens.
Results:
Our sample included 58,060 patients treated with either cephalosporin plus macrolide (36,796 patients) or a fluoroquinolone alone (21,264 patients) and with microbiological data; 127 (0.35%) patients who received cephalosporin plus macrolide and 65 (0.31%) who received a fluoroquinolone developed CDI. After adjustment for patient demographics, comorbidities, risk factors for antimicrobial resistance, and hospital characteristics, CDI risks were similar for fluoroquinolones versus cephalosporin plus macrolide (odds ratio [OR], 0.98; 95% confidence interval [CI], 0.70–1.38).
Conclusion:
Among patients with CAP at US hospitals, CDI was uncommon, occurring in ∼0.33% of patients. We did not detect a significant association between the choice of empiric guideline recommended antibiotic therapy and the development of CDI.
We conducted the first detailed mineral magnetic investigation of more than nine loess–paleosol couplets of the composite Titel-Stari Slankamen loess section in Serbia, which provides one of the longest and most complete terrestrial record of paleoclimatic changes in Europe since ~1.0 Ma. The results show that the ferrimagnetic mineral assemblage of the loess units is dominated by partially oxidized multidomain (MD) and pseudo-single domain (PSD) magnetite; however, with an increasing degree of pedogenesis, the eolian contribution is gradually masked by pedogenic superparamagnetic(SP) and single-domain (SD) ferrimagnets (mainly maghemite). The overall consistency of ferrimagnetic grain-size parameters indicates an absence of dissolution of the fine-grained ferrimagnetic fraction despite changes in climate regime over the past 1.0 Ma. The variations of normalized dJ/dT@120K and normalized χheating@530°C reflect a long-term stepwise increase in aridity during glacials with a major step at ~0.6–0.5 Ma, over the last 1.0 Ma. Overall, the results provide an improved basis for the future use of the magnetic properties of Serbian loess deposits for paleoclimatic reconstruction.
Moral disengagement is a social cognition people use to engage in wrongdoings even when they know it is wrong. However, little is known about the antecedents that predict moral disengagement. The current study focuses on the development of self-control and cooperation during middle childhood as two antecedents of moral disengagement among 1,103 children (50% female; 77% White, 12% Black, 6% Hispanic, and 5% other). Children's self-control at age 8 and growth in self-control from age 8 to 11 were positively linked to adolescents seeing themselves as having self-control at age 15, which then predicted less moral disengagement at age 18. Children's cooperation at age 8 also was positively linked to adolescents’ self-views of cooperation at age 15, which in turn, was associated with less moral disengagement at age 18. These findings demonstrate the potential of self-control and cooperation as intrapersonal and interpersonal strengths during middle childhood for mitigating moral disengagement 10 years later.
Evidence from pandemics suggests that influenza is often associated with bacterial coinfection. Among patients hospitalized for influenza pneumonia, we report the rate of coinfection and distribution of pathogens, and we compare outcomes of patients with and without bacterial coinfection.
Methods:
We included adults admitted with community-acquired pneumonia (CAP) and tested for influenza from 2010 to 2015 at 179 US hospitals participating in the Premier database. Pneumonia was identified using an International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) algorithm. We used multiple logistic and gamma-generalized linear mixed models to assess the relationships between coinfection and inpatient mortality, intensive care unit (ICU) admission, length of stay, and cost.
Results:
Among 38,665 patients hospitalized with CAP and tested for influenza, 4,313 (11.2%) were positive. In the first 3 hospital days, patients with influenza were less likely than those without to have a positive culture (10.3% vs 16.2%; P < .001), and cultures were more likely to contain Staphylococcus aureus (34.2% vs 28.2%; P = .007) and less likely to contain Streptococcus pneumoniae (24.9% vs 31.0%; P = .008). Of S. aureus isolates, 42.8% were methicillin resistant among influenza patients versus 53.2% among those without influenza (P = .01). After hospital day 3, pathogens for both groups were similar. Bacterial coinfection was associated with increased odds of in-hospital mortality (aOR, 3.00; 95% CI, 2.17–4.16), late ICU transfer (aOR, 2.83; 95% CI, 1.98–4.04), and higher cost (risk-adjusted mean multiplier, 1.77; 95% CI, 1.59–1.96).
Conclusions:
In a large US inpatient sample hospitalized with influenza and CAP, S. aureus was the most frequent cause of bacterial coinfection. Coinfection was associated with worse outcomes and higher costs.
The aeolian loess-paleosol sequences in the Chinese Loess Plateau (CLP) are an excellent archive of variations in atmospheric circulation in the geological past. However, there is no consensus regarding the roles of the East Asian winter monsoon and westerly winds in transporting the dust responsible for loess deposition during glacial and interstadial periods. We conducted detailed measurements of the anisotropy of magnetic susceptibility (AMS) on two parallel loess profiles covering the most recent 130 ka in the western CLP to determine paleowind directions. Results show that the magnetic lineations of the loess and paleosol units in both sections are significantly clustered along the northwest to southeast direction. These observations demonstrate that the prevailing wind system responsible for dust transport in the western CLP was the northwesterly winter monsoon, rather than the westerly winds. The AMS-derived dust-bearing wind direction was relatively stable during the last glacial and interglacial cycle in the western CLP, consistent with sedimentary and AMS evidence from the eastern CLP. Accordingly, it is reasonable to conclude that large areas of deserts and Gobi deserts areas located in the upwind direction were the dominant sources for the aeolian deposits of the Loess Plateau.