We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, on–off switching digitization of a W-band variable gain power amplifier (VGPA) with above 60 dB dynamic range is introduced for large-scale phased array. Digitization techniques of on–off switching modified stacking transistors with partition are proposed to optimize configuration of control sub-cells. By the proposed techniques, gain control of a radio frequency variable gain amplifier (VGA) could be highly customized for both coarse and fine switching requirements instead of using additional digital-to-analog converters to tune the overall amplifier bias. The designed VGA in 130 nm SiGe has achieved switchable gain range from −46.4 to 20.6 dB and power range from −25.0 to 15.7 dBm at W band. The chip size of the fabricated VGPA is about 0.31 mm × 0.1 mm.
This paper proposes an online robust self-learning terminal sliding mode control (RS-TSMC) with stability guarantee for balancing control of reaction wheel bicycle robots (RWBR) under model uncertainties and disturbances, which improves the balancing control performance of RWBR by optimising the constrained output of TSMC. The TSMC is designed for a second-order mathematical model of RWBR. Then robust adaptive dynamic programming based on an actor-critic algorithm is used to optimise the TSMC only by data sampled online. The system closed-loop stability and convergence of the neural network weights are guaranteed based on the Lyapunov analysis. The effectiveness of the proposed algorithm is demonstrated through simulations and experiments.
This work investigates the spatio-temporal evolution of coherent structures in the wake of a generic high-speed train, based on a three-dimensional database from large eddy simulation. Spectral proper orthogonal decomposition (SPOD) is used to extract energy spectra and energy ranked empirical modes for both symmetric and antisymmetric components of the fluctuating flow field. The spectrum of the symmetric component shows overall higher energy and more pronounced low-rank behaviour compared with the antisymmetric one. The most dominant symmetric mode features periodic vortex shedding in the near wake, and wave-like structures with constant streamwise wavenumber in the far wake. The mode bispectrum further reveals the dominant role of self-interaction of the symmetric component, leading to first harmonic and subharmonic triads of the fundamental frequency, with remarkable deformation of the mean field. Then, the stability of the three-dimensional wake flow is analysed based on two-dimensional local linear stability analysis combined with a non-parallelism approximation approach. Temporal stability analysis is first performed for both the near-wake and the far-wake regions, showing a more unstable condition in the near-wake region. The absolute frequency of the near-wake eigenmode is determined based on spatio-temporal analysis, then tracked along the streamwise direction to find out the global mode growth rate and frequency, which indicate a marginally stable global mode oscillating at a frequency very close to the most dominant SPOD mode. The global mode wavemaker is then located, and the structural sensitivity is calculated based on the direct and adjoint modes derived from a local spatial analysis, with the maximum value localized within the recirculation region close to the train tail. Finally, the global mode shape is computed by tracking the most spatially unstable eigenmode in the far wake, and the alignment with the SPOD mode is computed as a function of streamwise location. By combining data-driven and theoretical approaches, the mechanisms of coherent structures in complex wake flows are well identified and isolated.
The AIMTB rapid test assay is an emerging test, which adopted a fluorescence immunochromatographic assay to measure interferon-γ (IFN-γ) production following stimulation of effector memory T cells in whole blood by mycobacterial proteins. The aim of this article was to explore the ability of AIMTB rapid test assay in detecting Mycobacterium tuberculosis (MTB) infection compared with the widely applied QuantiFERON-TB Gold Plus (QFT-Plus) test among rural doctors in China. In total, 511 participants were included in the survey. The concordance between the QFT-Plus test and the AIMTB rapid test assay was 94.47% with a Cohen’s kappa coefficient (κ) of 0.84 (95% CI, 0.79–0.90). Improved concordance between the two tests was observed in males and in participants with 26 or more years of service as rural doctors. The quantitative values of the QFT-Plus test was higher in individuals with a result of QFT-Plus-/AIMTB+ as compared to those with a result of QFT-Plus-/AIMTB- (p < 0.001). Overall, our study found that there was an excellent consistency between the AIMTB rapid test assay and the QFT-Plus test in a Chinese population. As the AIMTB rapid test assay is fast and easy to operate, it has the potential to improve latent tuberculosis infection testing and treatment at the community level in resource-limited settings.
Chronic total coronary occlusion is among the most complex coronary artery diseases. Elevated homocysteine is a risk factor for coronary artery diseases. However, few studies have assessed the relationship between homocysteine and chronic total coronary occlusion.
Methods:
1295 individuals from Southwest China were enrolled in the study. Chronic total coronary occlusion was defined as complete occlusion of coronary artery for more than three months. Homocysteine was divided into quartiles according to its level. Univariate and multivariate logistic regression models, receiver operating characteristic curves, and subgroup analysis were applied to assess the relationship between homocysteine and chronic total coronary occlusion.
Results:
Subjects in the higher homocysteine quartile had a higher rate of chronic total coronary occlusion (P < 0.001). After adjustment, the odds ratio for chronic total coronary occlusion in the highest quartile of homocysteine compared with the lowest was 1.918 (95% confidence interval 1.237–2.972). Homocysteine ≥ 15.2 μmol/L was considered an independent indicator of chronic total coronary occlusion (odds ratio 1.53, 95% confidence interval 1.05–2.23; P = 0.0265). The area under the receiver operating characteristic curve was 0.659 (95% confidence interval, 0.618–0.701; P < 0.001). Stronger associations were observed in elderly and in those with hypertension and diabetes.
Conclusions:
Elevated homocysteine is significantly associated with chronic total coronary occlusion, particularly in elderly and those with hypertension and diabetes.
Schizophrenia is a complex and heterogeneous syndrome with high clinical and biological stratification. Identifying distinctive subtypes can improve diagnostic accuracy and help precise therapy. A key challenge for schizophrenia subtyping is understanding the subtype-specific biological underpinnings of clinical heterogeneity. This study aimed to investigate if the machine learning (ML)-based neuroanatomical and symptomatic subtypes of schizophrenia are associated.
Methods
A total of 314 schizophrenia patients and 257 healthy controls from four sites were recruited. Gray matter volume (GMV) and Positive and Negative Syndrome Scale (PANSS) scores were employed to recognize schizophrenia neuroanatomical and symptomatic subtypes using K-means and hierarchical methods, respectively.
Results
Patients with ML-based neuroanatomical subtype-1 had focally increased GMV, and subtype-2 had widespread reduced GMV than the healthy controls based on either K-means or Hierarchical methods. In contrast, patients with symptomatic subtype-1 had severe PANSS scores than subtype-2. No differences in PANSS scores were shown between the two neuroanatomical subtypes; similarly, no GMV differences were found between the two symptomatic subtypes. Cohen’s Kappa test further demonstrated an apparent dissociation between the ML-based neuroanatomical and symptomatic subtypes (P > 0.05). The dissociation patterns were validated in four independent sites with diverse disease progressions (chronic vs. first episodes) and ancestors (Chinese vs. Western).
Conclusions
These findings revealed a replicable dissociation between ML-based neuroanatomical and symptomatic subtypes of schizophrenia, which provides a new viewpoint toward understanding the heterogeneity of schizophrenia.
A new ternary intermetallic compound Al3GaCu9 was synthesized experimentally. A high-quality powder diffraction pattern of the compound was collected by an X-ray diffractometer, and its crystal structure was determined using the Rietveld refinement method. Results show that the compound has a cubic cell with the Al4Cu9 structure type (space group $P\bar{4}3m$ and Pearson symbol cP52). The lattice parameter a = 8.7132(3) Å, unit-cell volume V = 661.52 Å3, calculated density Dcalc = 7.26 g/cm3, and Z = 4. The residual factors converge to Rp = 2.96%, Rwp = 4.06%, and Rexp = 2.57%. The experimentally obtained reference intensity ratio value is 7.04.
Objectives: The increase in carbapenemase-producing organism (CPO) transmission among hospitalized patients is a growing concern. Studies investigating the transmission of CPO to epidemiologically linked contacts are scarce. We conducted an interim subgroup analysis of the ongoing multicenter household transmission of CPO in Singapore (CaPES-C) study to identify the acquisition rate of CPO among epidemiologically linked contacts of hospitalized CPO patients. Methods: This multicenter prospective cohort study was conducted between January and December 2021. We recruited CPO-positive patients and their epidemiologically linked contacts. Stool samples were collected from the patients at baseline, day 3, day 7, and at weeks 2, 3, 4, 5, 6, 12, 24, 36, and 48. Additionally, a sample was collected at the time of discharge from the hospital. Xpert Carba-R test was used to detect CPO genotypes in the stool samples. In this interim analysis, we calculated the acquisition rate of CPO among the epidemiologically linked hospital contacts of CPO positive patients using Stata version 15 software. Results: We recruited 22 (56.4%) CPO-positive index patients [blaNDM, n = 7 (31.8%); blaIMP, n = 3 (13.6%); blaOXA-48, n = 10 (45.5%), others, n = 2 (9.1%)] and 14 (35.9%) epidemiologically linked hospital contacts. The median age of CPO-positive patients was 72.5 years (IQR, 62–82) and 15 (68.2%) were female. The median age for the epidemiologically linked contacts was 82.5 years (IQR, 70–85) and 4 (28.6%) were female. After 1,082 patient days, 2 (14.3%) epidemiologically linked contacts tested positive for CPO giving an acquisition rate of 1.85 per 1,000 patient days (95% CI, 0.46 – 7.39). One of these participants acquired a concordant genotype (blaOXA-48) at day 7 and the other acquired a discordant genotype (CPO positive index, blaIMP; epidemiologically linked contact, blaNDM) at week 12 of follow-up. Conclusions: This small interim analysis revealed a high conversion rate among epidemiologically linked hospital contacts. A larger study is needed to understand the influence of genotypes, hospital environment, and human behavior on the transmission of CPO in hospitals.
Soft robots combine the load-bearing capability of rigid material with the resilience, shape-shifting capabilities of soft materials. This paper presents a novel soft actuator with stiffness variation using particulate jamming technology. We design a hybrid composite structure consisting of driving layer and jamming layer. The driving layer with the arc air chamber aim to achieve large bending deformation. A membrane containing particles is integrated with driving layer to module its stiffness. The influence factors of stiffness variation were analyzed from energy of point of view. The dependence of granular attributes on the stiffness of the actuator was studied. Furthermore, we illustrated influence of stiffness changes on the kinematic and dynamic performance of the soft actuator. The experimental results showed these performance indexes are twofold. On the one hand, the structural parameters have significant effect on the bending angle, but on the other hand they have little effect on the end force. We found that flow resistance inside air chamber results in bending morphology variation. The dynamic response subjected to a square-wave air pressure was analyzed to exhibit the actuator’s transient and steady vibration behavior. The actuator with greater stiffness has faster responsiveness, but smaller range of motion. These conclusions are helpful to adjust the stiffness behavior and to improve motion performance.
Background Mild Cognitive Impairment is an at-risk stage for dementia and early detection has been increasingly recommended to facilitate beneficial interventions and forward planning. Changes in cognition and function can be insidious. In ageing populations, relying on relatives to detect changes is not sustainable. Moreover, resource scarcity necessitates that we innovate to find less manpower dependent methods for early detection and assessment.
Objectives In two separate feasibility studies, we set out to evaluate if sensors could be utilized to (1) detect changes in behaviour patterns in homes of community dwelling elderly* & (2) evaluate instrumental activities of daily living (iADLs) in a smart home lab setting.
Method In the first study, 59 community-dwelling seniors (aged >65 years) were observed over the course of 2 months through the use of motion sensors, smart plugs, bed sensors and activity bands. Behaviour metrics such as forgetfulness, outings and sleep were tracked. In the second study, a smart lab was equipped with similar sensors and 35 seniors were tasked to complete two iADLs (using the telephone and counting money) while being evaluated by the sensor system.
Results In both studies, we found that it was feasible and seniors found the sensors to be acceptable. Over 80% of seniors had positive feedback for the in-home system and over 95% of seniors had found the lab-based evaluation of iADLs to be acceptable.
Conclusion Sensor technology and smart homes are feasible to utilize for assessment and monitoring of cognition and function. Knowing that seniors find it acceptable is a crucial initial step. Much more needs to be done to refine the systems and the clinical information it yields.
Loneliness is increasingly recognised as a serious public health issue worldwide. However, there is scarce research addressing the association between loneliness and suicide in older adults in rural China. We set out to examine loneliness and other psychosocial factors in elderly suicide cases and explore their interaction effects.
Methods
Using a 1 : 1 matched case–control design, data were collected from 242 elderly suicide cases and 242 living community controls by psychological autopsy method in rural China, including demographic characteristics, loneliness, depression, hopelessness and social support. The chi-square automatic interaction detection (CHAID) tree model and multivariable logistic regression analysis were used to explore the relationships of these factors and suicide.
Results
The CHAID tree model showed that loneliness, hopelessness and depressive symptoms were closely associated with completed suicide and that loneliness and hopelessness interacted with each other. The result of multivariable logistic regression showed that individuals who were unemployed [odds ratio (OR) = 2.344; 95% confidence interval (CI): 1.233–4.457], living alone (OR = 2.176; 95% CI: 1.113–4.254), had lower levels of subjective social support (OR = 2.185; 95% CI: 1.243–3.843), experienced depressive symptoms (OR = 6.700; 95% CI: 3.405–13.182), showed higher levels of hopelessness (OR = 7.253; 95% CI: 3.764–13.974) and felt higher levels of hopelessness × higher levels of loneliness (OR = 2.446; 95% CI: 1.089–5.492) were significantly associated with an elevated suicide risk in older people in rural China.
Conclusions
Regular evaluation of loneliness, hopelessness and depression can help detect older adults who are at risk of committing suicide. Interventions should target social support systems, particularly among people living alone, to alleviate feelings of loneliness and hopelessness. Treating depression is also key to preventing suicide among elderly people in rural China.
A dual-arm space robot has large potentials in on-orbit servicing. However, there exist multiple dynamic coupling effects between the two arms, each arm, and the base, bringing great challenges to the trajectory planning and dynamic control of the dual-arm space robotic system. In this paper, we propose a dynamic coupling modeling and analysis method for a dual-arm space robot. Firstly, according to the conservation principle of the linear and angular momentum, the dynamic coupling between the base and each manipulator is deduced. The dynamic coupling factor is then defined to evaluate the dynamic coupling degree. Secondly, the dynamic coupling equations between the two arms, each arm, and the base are deduced, respectively. The dynamic coupling factor is suitable not only for single-arm space robots but also for multi-arm space robot systems. Finally, the multiple coupling effects of the dual-arm space robotic system are analyzed in detail through typical cases. Simulation results verified the proposed method.
Research suggests that cause lawyers are a diverse group. Death penalty lawyers with attachment to political institutions and a strong commitment to procedurals tend to have a unique path to professional identification, participation in the legal process and acquiring the ability to affect case outcomes. Borrowing from Hilbink's typologies and Liu and Halliday's analytical framework, this study examines in detail the practices of proceduralist and progressive elite lawyers. It uses a high-profile capital case, the Nian Bin case, as a case study to analyse the motivation and strategies of the lead defence lawyer in the context of progressive proceduralist cause lawyers. Relevant theoretical and policy implications as well as suggestions for future studies are discussed.
Due to a large number of redundant degrees of freedom (DOFs), the hyper-redundant manipulator shows outstanding dexterity and adaptability in avoiding the obstacles in confined space. In this paper, a hybrid obstacle-avoidance method of spatial hyper-redundant manipulators is proposed, with both efficiency and accuracy considered. The space around an obstacle is classified into safe, warning, and dangerous zones. A two-level protection strategy is then addressed to handle the obstacle-avoidance problem from qualitative (i.e., pseudo-distance based on super-quadric function) and quantitative (i.e., Euclidean distance based on practical geometry function) perspectives, respectively. The only condition for switching between the two-level protections is the value of pseudo-distance. Then, a modified modal method, which is a trajectory planning method, is presented to plan the collision-free trajectory of the manipulator by maximizing the minimum pseudo-distance or Euclidean distance in different zones. Some parameters, including the arm-angle parameters and the equivalent link length parameters, are defined to represent the manipulator configuration. They are adjusted to avoid the obstacle, singularity, and joint limit. The simulations of 12-DOF manipulator and an experiment of 18-DOF manipulator verify the proposed methods.
The hyper-redundant manipulators are suitable for working in the constrained on-orbit servicing environment due to the extreme flexibility. However, its modelling and control are very challenging due to the characteristics of non-linearity and strong coupling. In this paper, considering the multi-level mapping among the motors, cables, joints, and end-effector, a proportional derivative (PD) with dynamic feedforward compensation control system is designed. The corresponding control system is divided into five parts: controller, planner, actuator, manipulator, and sensor. The actual control torque consisting of the desired feedforward torque and the feedback torque is generated by the controller. In order to improve the tracking accuracy and maintain rapid response, the torque, which is calculated by the dynamics model of the traditional joint-driven manipulator, is regarded as the desired feedforward torque. The parameters of interest are the angle and velocity of the universal joint and motors. The planner plans and converts the desired parameters of the universal joint to corresponding motors. Combining with the feedback angles and velocities signals of the corresponding motors, the feedback torque can be calculated by the PD control module. Finally, typical cases of six universal joints (12DOFs) manipulators are simulated and experimented. The results demonstrate that the method is very efficient for controlling spatial cable-driven hyper-redundant manipulators.
A coaxial-output rolled strip pulse-forming line (RSPFL) with a dry structure is researched for the purpose of miniaturization and all-solid state of pulse-forming lines (PFL). The coaxial-output RSPFL consists of a coaxial-output electrode (COE) and a rolled strip line (RSL). The COE is characterized by quasi-coaxial structure, making the output pulse propagate along the axial direction with a small output inductance. The RSL is rolled on the COE, whose transmission characteristics are analyzed theoretically. It shows that the RSL can be regarded as a planar strip line when the rolling radius of the strip line is larger than 60 times of the thickness of the insulation dielectric layer of RSL. CST modeling was carried out to simulate the discharging characteristic of the coaxial-output RSPFL. It shows that the coaxial-output RSPFL can deliver a discharging pulse with a rise time <6 ns when the impedance of the RSL matches that of the COE, which confirms the theoretical analysis. A prototype of the coaxial-output RSPFL was developed. A 49-kV discharging pulse on a matched load was achieved when it was charged to 100 kV. The discharging waveform has a pulse width of 32 ns, with a rise time of 6 ns, which is consistent with the simulation waveform. An energy-storage density of 1.9 J/L was realized in the coaxial-output RSPFL. By the method of multi-stage connection in series, a much higher output voltage is convenient to be obtained.
Heart failure (HF) is a major public health problem worldwide and in Asia. Sacubitril/valsartan reduces cardiovascular death and hospitalizations for HF. However, decision makers need to determine whether its benefits are worth the additional costs, given the low-cost generic status of current standard of care.
METHODS:
Using a Markov model, we projected lifetime clinical and economic outcomes of sacubitril/valsartan versus enalapril for 66-year-old patients with HF in Singapore. Key health states included New York Heart Association (NYHA) classes; patients in each state incurred a monthly risk of hospitalization for HF and cardiovascular death. Probabilities of events were based on the PARADIGM-HF trial. The uncertain treatment effect of sacubtril/valsartan in Asian patients was modelled using a hazard ratio (HR) of 1 as upper limit in sensitivity analyses. Utilities were obtained from published literature. Local national epidemiological and cost data were applied. Analyses were conducted from the Singapore healthcare payer's perspective. Both one-way and Probabilistic Sensitivity Analyses (PSA) based on 10,000 Monte Carlo simulations were performed.
RESULTS:
Compared to enalapril, sacubitril/valsartan was associated with an incremental cost-effectiveness ratio (ICER) of SGD74k (USD52k) per quality-adjusted life year (QALY) gained. The cost-effectiveness of sacubitril/valsartan was highly dependent on its effectiveness in reducing the risk of cardiovascular death. However, this was uncertain, particularly in the Asian subgroup, where results were not statistically significant. In sensitivity analyses using results from Asian patients, the ICERs ranged from SGD41k (USD30k) to SGD1.3 million (USD 0.94 million) per QALY gained. PSA showed the probability of sacubitril/valsartan being cost-effective was below 1 percent, 12 percent and 71 percent at thresholds of SGD20k (USD14k), SGD50k (USD36k) and SGD100k (USD 72k) per QALY gained, respectively.
CONCLUSIONS:
Given the uncertain ICER, sacubtril/valsartan may not provide good value for money compared to enalapril in reducing cardiovascular morbidity and mortality in patients with HF at the current daily cost. Our study highlights the cost-benefit trade-off that healthcare professionals and patients face when considering HF therapy.
In this work, the reduction mechanism of potassium chromate (K2CrO4) was investigated via in situ high-temperature X-ray diffraction coupled with Fourier transform infrared spectroscopy. During the hydrogen reduction of K2CrO4, the formation of K3CrO4, KCrO2, and KxCrO2 were detected for the first time. The study discovered that K2CrO4 was firstly reduced to K3CrO4 and an amorphous Cr(III) intermediate product at low temperature (400–500 °C). Moreover, the K3CrO4 was the only crystalline material at this stage. As the temperature increased, a stabilized amorphous CrOOH was formed. At a high temperature (550–700 °C), KCrO2 was generated. Interestingly, a portion of KCrO2 was spontaneously decomposed during the hydrogen reduction, accompanying by the formation of K0.7CrO2. Finally, the results clearly illustrated the reduction mechanism of K2CrO4: K2CrO4 → K3CrO4 → amorphous intermediate → KCrO2.
The Lorentz factor (Γ) is an important parameter related to the relativistic jet physics. We study the evolution patterns of Γ within gamma-ray burst (GRB) and active galactic nuclear jets for individual GRB 090168, GRB 140508A, and 3C 454.3. By estimating the Γ values for well-separated pulses in GRBs 090618 and 140508A with an empirical relation derived from typical GRBs, we find that the Γ evolution pattern in the two GRBs are different. The increasing-to-coasting evolution pattern of Γ in GRB 090618 likely indicates that the GRB fireball is still being accelerated in the prompt phase. The clear decrease evolution pattern of Γ in GRB 140508A suggests the deceleration of the fireball components. By deriving the Γ value through fitting their spectral energy distribution in different flares of 3C 454.3, a pattern of Γ-tracking-γ-ray flux is clearly found, likely indicating that the observed gamma-ray flares are being due to the Doppler boosting effect to the jet emission.