We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The pressure knapping technique develops circa 25,000 cal BP in Northeast Asia and excels at producing highly standardized microblades. Microblade pressure knapping spreads throughout most of Northeast Asia up to the Russian Arctic, and Alaska, in areas where the human presence was unknown. Swan Point CZ4b is the earliest uncontested evidence of human occupation of Alaska, at around 14,000 cal BP. It yields a pressure microblade component produced with the Yubetsu method, which is widespread in Northeast Asia during the Late Glacial period. Through the techno-functional analysis of 634 lithic pieces from this site, this study seeks to identify the techno-economical purposes for which the Yubetsu method was implemented. Data show that the microblade production system is related to an economy based on the planning of future needs, which is visible through blanks standardization, their overproduction, their functional versatility, and the segmentation of part of the chaîne opératoire. This expresses the efficiency and economic value of the microblade production system. The flexible use of pressure microblades identified at Swan Point CZ4b is also found in Japan, Korea, Kamchatka, and the North Baikal region, suggesting that their modes of use accompany the spread of early microblade pressure knapping over an immense territory across Beringia.
The in-depth perturbation of vicinal water by the surfaces of montmorillonite layers was investigated by relating the swelling pressure, Π, of the montmorillonite layers to the H-O-H bending frequency, ν2, of the interlayer water. For this purpose, an oriented montmorillonite gel was deposited on a porous filter in an environmental chamber. On its underside the filter was in contact with a solution maintained at atmospheric pressure. By admitting nitrogen gas at a known pressure to the environmental chamber, water was squeezed from the gel into the solution until equilibrium was reached and Π equalled the applied pressure. Then the gel was divided into 2 parts. One part was used for the gravimetric determination of the water content, mw/mc. It was possible, therefore, to determine mw/mc as a function of Π. The other part of the sample was transferred to an FTIR spectrometer where the ν2 of the water within it was measured by attenuated total reflectance. Thus, the same samples were used to determine the dependence of both Π and ν2 on mw/mc. It was found that Π and ν2 were both exponential functions of mc/mw and so a linear relation was found between ln(Π + 1) and ln(ν2/ν2°), where ν2° is the H-O-H bending frequency of bulk water. These results strongly support the conclusion that the in-depth perturbation of the water by the surfaces of the montmorillonite layers is primarily responsible for both the development of Π and the departure of ν2 from ν2°.
Decisions to adopt health technologies rely, in part, on judgements about cost effectiveness. Cost effectiveness is commonly assessed against a willingness-to-pay threshold for health gains. Building an evidence base on the marginal productivity of health spending to inform the value of the threshold is increasingly of interest for resource allocation decision-making and technology implementation. We report on an in-progress analysis to inform a threshold for policy purposes in British Columbia, Canada.
Methods
We developed a ten-year panel-data model with instrumental variables, which lessens the degree of time-invariant confounding and addresses biased causal inferences caused by unobserved factors, to provide estimates of the marginal cost per health unit measured using quality-adjusted life-years (QALYs). We use the Johns Hopkins Adjusted Clinical Group (ACG) system and a British Columbia Health System Matrix to classify patients into six resource use bands (RUBs) ranging from ‘healthy’ to ‘very high morbidity’. Patients are also classified by chronic conditions and types of services. Place of residence and geographical region of health authorities are considered. Variables included age, gender, mortality and comorbidity rates, costs of hospitalizations, emergency department and physician visits, residential and home care, laboratory services, diagnosis and medications, and quality of life. Instrumental variables included sociodemographic characteristics as reported in the Canadian census.
Results
The largest RUB was ‘moderate’ morbidity (39.3%), while the smallest was ‘healthy’ (1.5%). The youngest was the ‘low’ morbidity (mean 31, standard deviation [SD] 21) and the oldest was ‘very high’ (mean 69, SD 17). The healthy group had the smallest mean costs (CND563, SD CND4,121; equivalent to USD421, SD USD3,083). In contrast, the ‘very high’ group had the largest (CND20,398, SD CND36,188; equivalent to USD15,258, SD USD27,069). Age and gender standardized comorbidity index scores ranged from 0.05 to 6.41 (median 0.98). Additional analyses (e.g., costs per QALY) are ongoing and the results will be reported at the conference.
Conclusions
Our empirical approach is robust and flexible, allowing estimates of marginal productivity according to factors such as disease, geographical region, service type, and care sector. This work has applications at the provincial and national levels and adds to methodological literature in the field.
We examined the effect of an antimicrobial stewardship program (ASP), procalcitonin testing and rapid blood-culture identification on hospital mortality in a prospective quality improvement project in critically ill septic adults. Secondarily, we have reported antimicrobial guideline concordance, acceptance of ASP interventions, and antimicrobial and health-resource utilization.
To examine temporal trends and geographic variations and predict inpatient rehabilitation (IPR) length of stay (LOS) and home discharge for stroke patients.
Methods:
Patients aged ≥18 years who were admitted to an IPR facility in Alberta, Canada, between 04/2014 and 03/2018 (years 2014–2017) were included. Predictors of LOS and home discharge were examined using 2014–2016 data and validated using 2017 data. Multivariable linear regression (MLR), multivariable negative binomial (MNB), and multivariable quantile regressions (MQR) were used to examine LOS, and logistic regression was used for home discharge.
Results:
We included 2686 rehabilitation admissions between 2014 and 2017. The mean LOS decreased (2014: 71 days; 2017: 62.1 days; p = 0.003) during the study period and was shortest in Edmonton (59.1 days) compared to Calgary (66 days) or other localities (70.8 days; p < 0.001). Three-quarters of patients were discharged home and this proportion remained unchanged between 2014 and 2017. Calgary patients were more likely to be discharged home than those in Edmonton (OR = 0.62; p = 0.019) or other localities (OR = 0.39; p = 0.011). The MLR and MNB models provided accurate prediction for the mean LOS (predicted = 59.9 and 60.8 days, respectively, vs. actual = 62.1 days; both p > 0.5), while the MQR model did so for the median LOS (predicted = 44.3 days vs. actual = 44 days; p = 0.09). The logistic regression resulted in 82.4% of correct prediction, a sensitivity of 91.6%, and a specificity of 50.7% for home discharge.
Conclusions:
Rehabilitation LOS decreased while the proportion of home discharge remained unchanged during the study period. Both varied across health zones. Identifiable statistical models provided accurate prediction with a separate patient cohort.
The prevention, treatment and control of Haemonchus contortus have been increasingly problematic due to its widespread occurrence and anthelmintic resistance. There are very few descriptions of recombinant antigens being protective for H. contortus, despite the success of various native antigen preparations, including Barbervax. We recently identified an H. contortus excretory–secretory antigen, H. contortus adhesion-regulating molecule 1 (HcADRM1), that served as an immunomodulator to impair host T-cell functions. Given the prophylactic potential of HcADRM1 protein as a vaccine candidate, we hereby assessed the efficacies of HcADRM1 preparations against H. contortus infection. Parasitological and immunological parameters were evaluated throughout all time points of the trials, including fecal egg counts (FEC), abomasal worm burdens, complete blood counts, cytokine production profiles and antibody responses. Active vaccination with recombinant HcADRM1 (rHcADRM1) protein induced protective immunity in inoculated goats, resulting in reductions of 48.9 and 58.6% in cumulative FEC and worm burdens. Simultaneously, passive administration of anti-HcADRM1 antibodies generated encouraging levels of protection with 46.7 and 56.2% reductions in cumulative FEC and worm burdens in challenged goats. In addition, HcADRM1 preparations-immunized goats showed significant differences in mucosal and serum antigen-specific immunoglobulin G (IgG) levels, total mucosal IgA levels, haemoglobin values and circulating interferon-γ, interleukin (IL)-4 and IL-17A production compared to control goats in both trials. The preliminary data of these laboratory trials validated the immunoprophylactic effects of rHcADRM1 protein. It can be pursued as a potential vaccine antigen to develop an effective recombinant subunit vaccine against H. contortus under field conditions.
Due to an aging population, shortage of healthcare staff, and escalating healthcare costs, there has been a recent shift in the professional roles and responsibilities in acute care settings to help bridge the care gap. Paramedics, whose primary responsibilities have been in emergency/transportation services, are increasingly involved in the management of chronic diseases in the community setting. However, even with additional training, there are concerns about the safety and effectiveness of this expanded role. The objective of this presentation is to highlight some of the key findings from a health technology assessment report on the safety and effectiveness of community paramedicine in assessing and managing conditions/diseases with low acuity.
Methods
A systematic review was conducted to identify studies that evaluated the safety and effectiveness of different community paramedicine programs.
Results
Four systematic reviews and 20 primary studies (one randomized controlled trial (RCT) and 19 observational studies) were identified. Of these, two systematic reviews and 14 primary studies focused on the safety and effectiveness of Emergency Care Practitioner (ECP) programs ̶ widely implemented programs whereby a paramedic or nurse undertakes activities traditionally performed by physicians, such as the initial assessment of patients, provision of simple treatment, or referral of patients to other clinical care. Limited evidence showed that ECP programs are promising in reducing repeated emergency calls, emergency department visits, hospital admissions/readmissions, and emergency transport charges. While the majority of included studies did not report any safety outcomes, no significant safety issues were identified from the cluster RCT. Evidence for other types of community paramedicine is limited.
Conclusions
Evaluation of the impact of community paramedicine programs remains methodologically challenging. Additional cluster RCTs may help determine the effectiveness of community paramedicine programs; safety outcomes should be a key element of future observational studies.
The objectives of this study were to systematically review published research on the relationship between nursing staff coverage, care hours, and quality of care (QoC) in long-term care (LTC) facilities; and to conduct a real world evidence (RWE) analysis using Alberta real world data (RWD) to inform policy makers on whether any amendments could be made to current regulations.
Methods
A systematic review (SR) of research evidence published between January 2000 and May 2018 on the relationship between nursing staff coverage, care hours, and QoC in LTC facilities was conducted. Panel data regressions using available RWD from Alberta, Canada, were performed to assess associations between nursing care hours and LTC outcomes. Outcomes of interest included quality indicators related to resident outcomes, hospital admissions, emergency room visits and family satisfaction. Nursing care hours considered in SR and RWE analysis included those provided by registered nurses (RNs) and licensed practical nurses (LPNs).
Results
The SR found inconsistent and poor quality evidence relevant to the questions of interest, indicating a great uncertainty about the association between nursing staff time and type of coverage and QoC. Although some positive indications were suggested, major weaknesses of reviewed studies limited interpretation of SR results. RWE analysis found that impact of care hours on LTC outcomes was heterogeneous, dependent on outcome measurements. There was evidence that total staff, RN, and LPN hours had positive effects on some resident outcomes and magnitude of effect differed for different nursing staff.
Conclusions
No definitive conclusion could be drawn on whether changing nursing staff time or nursing staff coverage models would affect residents’ outcomes based on the research evidence gathered in the SR. RWE analysis helped to fill a gap in the available published literature and allowed policy makers to better understand the impact of revising current regulations based on actual outcomes.
Population growth, epidemiological and demographic transition, and a shortage of healthcare workers are affecting health care systems in Australia, Canada, the United Kingdom (UK), and the United States (US). Community paramedicine (CP) programs provide a bridge between primary care and emergency care to address the needs of patients with low acuity but lack of access to primary care. However, how to capture the key characteristics of these programs and present them in a meaningful way is still a challenge. The objective of this presentation is to identify and describe the characteristics of currently existing CP programs in the four countries to inform policy-making on CP program development in Alberta.
Methods:
Information was obtained from systematic reviews, health technology assessments, general reviews, and government documents identified through a comprehensive literature search. The characteristics of the CP programs are described using a framework originally developed in Australia with three categories: (i) the primary health care model, (ii) the health integration model (in Australia, called the substitution model), and (iii) the community coordination model.
Results:
In general, Australia emphasizes rural/remote paramedics, whereas Canada, the UK, and the US implement expanded paramedic practice within different environments including rural, remote, regional, and metropolitan settings. Extended care provider programs have been intensively investigated and widely implemented in the UK. While the identified CP programs vary in terms of program components, designation of providers, skill mix, target population, and funding model, the majority of these CP programs fall under the primary health care category of the Australian framework.
Conclusions:
Transitioning from hospital-based to community-based health care requires careful consideration of all key factors that could contribute to future program success. Delineating key components of CP programs using the Australian framework will help Alberta decision-makers design, develop, and implement appropriate CP programs that adequately address local needs.
The cost-effectiveness of endovascular therapy (EVT) compared to tissue plasminogen activator (tPA) alone for acute ischemic stroke (AIS) has been established in the literature. However, decision-makers still face challenges of how to best deliver EVT in a timely manner to maximize patient outcomes while minimizing the burden to the healthcare system, given that AIS has time-dependent treatment outcomes. The objective of this presentation is to report an optimization approach for improving health system value and outcomes for patients with AIS who are eligible for EVT in Alberta.
Methods:
An economic model was developed to compare combinations of “mothership” (transport directly to a comprehensive stroke center [CSC] to receive tPA and EVT) and “drip-and-ship” (transport to a primary stroke centre to receive tPA, followed by transport to a CSC to receive EVT) methods across Alberta. The model considered geographical variation and searched for the best delivery methods through a pairwise comparison of all possible strategies. The controlled variables including in the model were population densities, disease epidemiology, time/distance to hospitals, available medical services, treatment eligibility and efficacy, and costs. Patient outcomes were measured by functional independence. The model defined optimal strategies by identifying the transport methods that produced the highest probability of improved health outcomes at the lowest cost.
Results:
The analysis produced an optimization map showing optimal strategies for EVT delivery. The lifetime cost (standard deviation [SD]) per patient and likelihood (SD) of good outcomes was CAD 291,769 (CAD 11,576) [USD 226,207 (USD 8,975)] and 41.82 percent (0.013) when considering optimal clinical outcomes, and CAD 287,725 (CAD 4,141) [USD 223,097 (USD 3,211)] and 41.67 percent (0.016) when considering optimal economic efficiency.
Conclusions:
Our model reduces the gap that exists between health technology implementation and cost-effectiveness analysis; namely, neither fully addresses relative efficiency driven by geographical variation, which may misrepresent system value in local settings. Implementation strategies generated in our model capture full values in terms of patient outcomes and costs.
Swan Point in central Alaska contains the oldest recognized human occupation in Alaska (Cultural Zone 4b [CZ4b]), dating to circa 14,000 cal BP. This component consists of a microblade and burin industry with clear technological ties to the Siberian Upper Paleolithic Diuktai Culture. Through the systematic use of the Yubetsu method for the production of microblades, Swan Point is technologically more similar to Siberian microblade sites than to later-age (Denali complex) microblade sites in Alaska. The Yubetsu method is the hallmark of the Diuktai Culture, and in Alaska, Swan Point CZ4b is the only component with systematic production of microblades using the Yubetsu method. Other late Pleistocene and Holocene microblade sites in Alaska have an industry based on Campus-style, conical, or tabular microblade cores. Analysis of the collection furthers our understanding of how CZ4b relates to previous Siberian Diuktai-related assemblages and to later Alaskan Denali-related sites. We interpret the CZ4b component as representing a brief single event that has major cultural and technological implications for the early colonization process of North America.
The Dietary Guidelines for Americans (DGA) promote healthy dietary choices for all Americans aged 2 years and older; however, the majority of Americans do not meet recommendations. The goal of the present study was to identify both barriers and facilitators to adherence to DGA recommendations for consumption of five recommended food groups: grains (specifically whole grains), vegetables, fruits, meat/beans and milk (specifically reduced-fat/non-fat), among American-Indian children.
Design
Nominal group technique sessions were conducted to identify and prioritize children’s perceived barriers and facilitators to following the DGA, as presented in the ‘MyPyramid’ consumer education icon. After response generation to a single question about each food group (e.g. ‘What sorts of things make it harder (or easier) for kids to follow the MyPyramid recommendation for vegetables?’), children individually ranked their top five most salient responses. Ranked responses are presented verbatim.
Setting
A rural Northern Plains American-Indian reservation, USA.
Subjects
Sixty-one self-selected fifth-grade children.
Results
Core barriers for all food groups studied included personal preference (i.e. ‘don’t like’) and environmental (i.e. ‘cost too much’; ‘store is too far to get them’; ‘grandma don’t have’). Core facilitators included suggestions, i.e. ‘make a garden and plant vegetables’; ‘tell your friends to eat healthy’.
Conclusions
Barriers and facilitators are dissimilar for individual food groups, suggesting that dietary interventions should target reduction of barriers and promotion of facilitators specific to individual food groups recommended by the DGA.
An enormous effort is underway worldwide to attempt to detect gravitational waves. If successful, this will open a new frontier in astronomy. An essential portion of this effort is being carried out in Australia by the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA), with research teams working at the Australia National University, University of Western Australia, and University of Adelaide involving scientists and students representing many more institutions and nations. ACIGA is developing ultrastable high-power continuous-wave lasers for the next generation interferometric gravity wave detectors; researching the problems associated with high optical power in resonant cavities; opening frontiers in advanced interferometry configurations, quantum optics, and signal extraction; and is the world's leader in high-performance vibration isolation and suspension design. ACIGA has also been active in theoretical research and modelling of potential astronomical gravitational wave sources, and in developing data analysis detection algorithms. ACIGA has opened a research facility north of Perth, Western Australia, which will be the culmination of these efforts. This paper briefly reviews ACIGA's research activities and the prospects for gravitational wave astronomy in the southern hemisphere.
Despite the increasing number of studies on the magnitude of Ne/N ratios, much remains unknown about the effects of demographic and environmental variables on Ne/N. We determined Ne/N for seven population size treatments, ranging from N = 2 to N = 960, in the red flour beetle Tribolium castaneum. Ne/N decreased with increasing N, as evidenced by a significant negative relationship between log N and Ne/N. Our results are consistent with other published data on the relationship between Ne/N and N. Effective population sizes in large populations may be much smaller than previously recognized. These results have important implications for conservation and evolutionary biology.
We present a systematic study on the correlation of hydrogen dilution profiles to structural properties materials and solar cell performance in nc-Si:H solar cells. We deposited nc-Si:H single-junction solar cells using a modified very high frequency (VHF) glow discharge technique on stainless steel substrates with various profiles of hydrogen dilution in the gas mixture during deposition. The material properties were characterized using Raman spectroscopy, X-TEM, AFM, and C-AFM. The solar cell performance correlates well with the material structures. Three major conclusions are made based on the characterization results. First, the optimized nc-Si:H material does not show an incubation layer, indicating that the seeding layer is well optimized and works as per design. Second, the nanocrystalline evolution is well controlled by hydrogen dilution profiling in which the hydrogen dilution ratio is dynamically reduced during the intrinsic layer deposition. Third, the best nc-Si:H single-junction solar cell was made using a proper hydrogen dilution profile, which caused a nanocrystalline distribution close to uniform throughout the thickness, but with a slightly inverse nanocrystalline evolution. We have used the optimized hydrogen dilution profiling and improved the nc-Si:H solar cell performance significantly. As a result, we have achieved an initial active-area cell efficiency of 9.2% with a nc-Si:H single-junction structure, and 15.4% with an a-Si:H/a-SiGe:H/nc-Si:H triple-junction solar cell structure.
All-polymer multilayer hollow core photonic fiber preforms were fabricated using consecutive deposition from a solvent phase of two polymers with high and low refractive indices (RI). Processing techniques for two polymer pairs—polystyrene (PS)/poly(methyl methylacrylate) (PMMA) and polycarbonate (PC)/poly(vinylene difloride) (PVDF)—were established. The fabrication process involved consecutive film deposition by solvent evaporation of polymer solutions on the inside of a rotating PMMA or PC tube, used as a cladding material. By injecting right volumes of the polymer solutions into a spinning tube the thickness of each layer could be reliably controlled from 20 to 100 μm. Proper selection of solvents and processing conditions was crucial for ensuring high optical and mechanical quality of a resultant preform, as well as compatibility of different polymer films during co-deposition. Preforms of 10 layers for PMMA/PS material combination and 15 layers for PVDF/PC were demonstrated. Fabrication of preforms with higher number of layers is readily possible and is only a question of preform fabrication time. An alternative method of preform fabrication by co-rolling of polymer bilayers is also presented in this paper, drawing of PMMA/PS, PVDF/PC fibers with up to 32 layers is demonstrated.
We present a fluid dynamics model for the drawing of hollow multilayer polymer optical fiber. A newtonian model is considered assuming slender geometries. Hollow core collapse during drawing and layer thickness non-uniformity are investigated as a function of draw temperature, draw ratio, feeding speed, core pressurization and mismatch of material properties in a multilayer.
Solid state crystallization of hydrogenated amorphous silicon (a-Si:H) prepared by hot-wire CVD is studied in solid phase epitaxy mode. By using a novel optical method combined with cross-sectional TEM and SIMS, a reduction of epitaxial growth speed is observed with increase in a-Si:H film thickness. Namely, in films thinner that 0.5 micron, solid phase epitaxy velocity depends linearly on film thickness. As the film thickness increases beyond 1 micron, the average velocity of solid phase epitaxy decreases considerably with respect to that in thinner films. In this regime, its velocity becomes also time-dependent: initial slow propagation of crystallization front gets considerably accelerated after the front has traveled above 400nm. SIMS thickness profiles of hydrogen shows considerably more residual hydrogen in thicker films after the start of solid phase epitaxy. In addition, prolonged pre-dehydrogenation at lower temperatures results in the increase in the average epitaxy speed in thicker films. These phenomena are likely related to delayed hydrogen outdiffusion in thicker films, which also leads to time-dependent speed of the solid-phase epitaxy front. We conclude that excess residual hydrogen reduces the rate of solid-phase crystalline growth.
Products formed from reactions of methyl iodide, 1-chloropropane, 1-iodopropane and 1-bromopropane with Na0 treated and untreated NaX and NaY zeolites were studied using solid state 13C NMR and IR spectroscopy. At room temperature, methyl iodide dissociates to form framework methoxy in untreated NaX with no reaction observed in untreated NaY. Upon Na0 treatment, both NaX and NaY reacts with methyl iodide to form framework methoxy, methane and ethane. Longer carbon chain 1-iodo, bromo and chloropropane were also studied. 1-iodopropane undergoes dehalogenation to form framework propoxy while 1-chloropropane and 1-bromopropane undergoes dehalogenation/ dehydrohalogenation to form framework propoxy and propene.
Future microprocessor technologies will require interlayer dielectric (ILD) materials with a dielectric constant (κ-value) less than 2.5. Organosilicate glass (OSG) materials must be nanoporous to meet this demand. However, the introduction of nanopores creates many integration challenges. These challenges include 1) integrating nanoporous films with low mechanical strength into conventional process flows, 2) managing etch profiles, 3) processinduced damage to the nanoporous ILD, and 4) controlling the metal/nanoporous ILD interface. This paper reviews research to maximize mechanical strength by engineering optimal pore structures, controlling trench bottom roughness induced by etching and understanding its relationship to pore size, repairing plasma damage using silylation chemistry, and sealing a nanoporous surface for barrier metal (liner) deposition.