We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Significant differences in life-history traits between the southern population (S) and northern (N) population of the cabbage beetle Colaphellus bowringi make it an excellent model for studying inheritance in this insect. In the present study, we observed the life-history traits of pure strains, F1, reciprocal backcross and reciprocal F2 progeny under a photoperiod of L:D 15:9 h at 22 °C. The S population had shorter larval development time, longer pupal time, higher body weight, growth rate and weight loss compared with the N population. In the F1 testing, the larval development time and body weight in hybrid populations were intermediate between the parents, and the paternal parents played a greater role in determining the larval development time, while the maternal parents exhibited a greater role in determining the body weight. The pupal time of hybrid populations was significantly shorter than that of the parents. In the reciprocal backcross testing, both father and grandfather affected the larval development time, while both mother and grandmother affected the body weight. Consistently, in the reciprocal F2 cross testing, the grandfather was more influential in determining the larval development time, and grandmother was more important in determining the body weight. In all tested populations, females had greater body weight, higher growth rate and weight loss than males. Hybridization pattern did not affect sex dimorphism and sex ratio. Overall, these findings suggest that different pathways (maternal or paternal effects) were involved in the inheritance of various life-history traits in C. bowringi.
Pro-environmental behavior, including waste sorting and recycling, involves a combination of future-oriented (futureness) and other-oriented (otherness) attributes. Inspired by the perspective of intergenerational choice, this work explores whether eliciting concerns for future others could increase public support for recycling policy and recycling behavior. Study 1 consisted of an online random controlled trial and a laboratory experiment. In Study 1A (N = 400), future other-concern was primed using a static text manipulation, whereas in Study 1B (N = 192), a dynamic virtual manipulation was employed. The results showed that people in the conditions that elicited future other-concern reported greater household recycling intentions and more actual recycling behavior than those in the control conditions. Study 2A (N = 467) and Study 2B (N = 600) generalized this effect on the acceptance of the ‘Certain Time Certain Place’ waste sorting policy in China. Consistent with the intergenerational choice model, envisioning the future of subsequent generations is more impactful in gaining policy approval than merely envisioning a future time. These findings provide a new method for promoting public policy approval and recycling behavior, suggesting that people could become environmentally friendly when they are guided to consider future others.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.
Data on trends in the epidemiological burden of bipolar disorder are scarce.
Aims
To provide an overview of trends in bipolar disorder burden from 1990 to 2019.
Method
Revisiting the Global Burden of Disease Study 2019, we analysed the number of cases, calculated the age-standardised rate (per 100 000 population) and estimated annual percentage change (EAPC) of incidence, prevalence and years lived with disability (YLDs) for bipolar disorder from 1990 to 2019. The independent effects of age, period and cohort were estimated by the age–period–cohort modelling.
Results
Globally, the bipolar disorder-related prevalent cases, incident cases and number of YLDs all increased from 1990 to 2019. Regionally, the World Health Organization Region of the Americas accounted for the highest estimated YLD number and rate, with the highest age-standardised prevalence rate in 1990 and 2019 and highest EAPC of prevalence. By sociodemographic index (SDI) quintiles, all five SDI regions saw an increase in estimated incident cases. Nationally, New Zealand reported the highest age-standardised rate of incidence, prevalence and YLDs in 1990 and 2019. The most prominent age effect on incidence rate was in those aged 15–19 years. Decreased effects of period on incidence, prevalence and YLD rates was observed overall and in females, not in males. The incidence, prevalence and YLD rates showed an unfavourable trend in the younger cohorts born after 1990, with males reporting a higher cohort risk than females.
Conclusions
From 1990 to 2019, the overall trend of bipolar disorder burden presents regional and national variations and differs by age, sex, period and cohort.
According to the public data collected from the Health Commission of Gansu Province, China, regarding the COVID-19 pandemic during the summer epidemic cycle in 2022, the epidemiological analysis showed that the pandemic spread stability and the symptom rate (the number of confirmed cases divided by the sum of the number of asymptomatic cases and the number of confirmed cases) of COVID-19 were different among 3 main epidemic regions, Lanzhou, Linxia, and Gannan; both the symptom rate and the daily instantaneous symptom rate (daily number of confirmed cases divided by the sum of daily number of asymptomatic cases and daily number of confirmed cases) in Lanzhou were substantially higher than those in Linxia and Gannan. The difference in the food sources due to the high difference of the population ethnic composition in the 3 regions was probably the main driver for the difference of the symptom rates among the 3 regions. This work provides potential values for prevention and control of COVID-19 in different regions.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
This study evaluated the association between inflammatory diets as measured by the Dietary Inflammatory index (DII), inflammation biomarkers and the development of preeclampsia among the Chinese population. We followed the reporting guidelines of the Strengthening the Reporting of Observational Studies in Epidemiology statement for observational studies. A total of 466 preeclampsia cases aged over 18 years were recruited between March 2016 and June 2019, and 466 healthy controls were 1:1 ratio matched by age (±3 years), week of gestation (±1 week) and gestational diabetes mellitus. The energy-adjusted DII (E-DII) was computed based on dietary intake assessed using a seventy-nine item semiquantitative FFQ. Inflammatory biomarkers were analysed by ELISA kits. The mean E-DII scores were −0·65 ± 1·58 for cases and −1·19 ± 1·47 for controls (P value < 0·001). E-DII scores positively correlated with interferon-γ (rs = 0·194, P value = 0·001) and IL-4 (rs = 0·135, P value = 0·021). After multivariable adjustment, E-DII scores were positively related to preeclampsia risk (Ptrend < 0·001). The highest tertile of E-DII was 2·18 times the lowest tertiles (95 % CI = 1·52, 3·13). The odds of preeclampsia increased by 30 % (95 % CI = 18 %, 43 %, P value < 0·001) for each E-DII score increase. The preeclampsia risk was positively associated with IL-2 (OR = 1·07, 95 % CI = 1·03, 1·11), IL-4 (OR = 1·26, 95 % CI = 1·03, 1·54) and transforming growth factor beta (TGF-β) (OR = 1·17, 95 % CI = 1·06, 1·29). Therefore, proinflammatory diets, corresponding to higher IL-2, IL-4 and TGF-β levels, were associated with increased preeclampsia risk.
During the late Palaeozoic Era, a series of related marine strata dominated by multi-layer limestones were deposited in the southern North China Craton. In order to gain new insights into the systematic geochemistry of the carbonate succession of the representative formation (Taiyuan Formation), we examined 59 limestone samples collected from the Huaibei Coal Basin (HCB), with a view towards quantitatively determining the major and trace elements and stable isotope compositions. The data obtained can provide essential evidence for reconstruction of the depositional palaeo-environment and tectonic setting of the Taiyuan Formation. Both X-ray diffraction analyses and palaeoredox proxies (e.g. V/Cr, V/(V + Ni) and authigenic U) indicated that the limestone layers were deposited in an oxic–dysoxic zone, with calcite as the main component. Moreover, palaeomagnetic evidence provided support for the conclusion that these limestones were laid down within an epicontinental sea depositional environment under a warm or hot palaeoclimate during the transition between late Carboniferous and early Permian time. Additionally, evidence obtained from our analyses of trace and rare earth elements revealed that the tectonic setting of the Taiyuan Formation (L1–L5) in the HCB transited from an open ocean to a passive continental margin, thereby indicating that this transformation stemmed from the subduction closure of the northeastern Palaeotethys Ocean. The findings of this study would be of interest to those working on the upper Palaeozoic marine strata in the southern North China Craton.
Salicylic acid (SA), a phytohormone, has been considered to be a key regulator mediating plant defence against pathogens. It is still vague how SA activates plant defence against herbivores such as chewing and sucking pests. Here, we used an aphid-susceptible wheat variety to investigate Sitobion avenae response to SA-induced wheat plants, and the effects of exogenous SA on some defence enzymes and phenolics in the plant immune system. In SA-treated wheat seedlings, intrinsic rate of natural increase (rm), fecundity and apterous rate of S. avenae were 0.25, 31.4 nymphs/female and 64.4%, respectively, and significantly lower than that in the controls (P < 0.05). Moreover, the increased activities of phenylalanine-ammonia-lyase, polyphenol oxidase (PPO) and peroxidase in the SA-induced seedlings obviously depended on the sampling time, whereas activities of catalase and 4-coumarate:CoA ligase were suppressed significantly at 24, 48 and 72 h in comparison with the control. Dynamic levels of p-coumaric acid at 96 h, caffeic acid at 24 and 72 h and chlorogenic acid at 24, 48 and 96 h in wheat plants were significantly upregulated by exogenous SA application. Nevertheless, only caffeic acid content was positively correlated with PPO activity in SA-treated wheat seedlings (P = 0.031). These findings indicate that exogenous SA significantly enhanced the defence of aphid-susceptible wheat variety against aphids by regulating the plant immune system, and may prove a potential application of SA in aphid control.
A southern population (S) from Xiushui County (29°1′N, 114°4′E) and a northern population (N) from Shenyang city (41°48′N, 123°23′E) of the cabbage beetle, Colaphellus bowringi vary greatly in their life-history traits, and may serve as an excellent model with which to study the inheritance of life-history traits. In the present study, we performed intraspecific hybridization using the two populations, comparing the key life-history traits (fecundity, development time, body weight, growth rate, and sexual size dimorphism (SDD)) between the two populations (S♀ × S♂ and N♀ × N♂) and their two hybrid populations (S♀ × N♂ and N♀ × S♂ populations) at 19, 22, 25, and 28°C. Our results showed that there were significant differences in life-history traits between the two parental populations, with the S population having a significantly higher fecundity, shorter larval development time, larger body weight, higher growth rate, and greater weight loss during metamorphosis than the N population at almost all temperatures. However, these life-history traits in the two hybrid populations were intermediate between those of their parents. The life-history traits in the S × N and N × S populations more closely resembled those of the maternal S population and N population, respectively, showing maternal effects. Weight loss for both sexes was highest in the S population, followed by the S × N, N × S, and N populations at all temperatures, suggesting that larger pupae lost more weight during metamorphosis. The changes in SSD with temperature were similar between the S and the S × N populations and between the N and the N × S populations, also suggesting a maternal effect. Overall, our results showed no drastic effect of hybridization on C. bowringi, being neither negative (hybrid inferiority) nor positive (heterosis). Rather, the phenotypes of hybrids were intermediate between the phenotypes of their parents.
Terrorist attacks can occur anywhere. As the threat of terrorism develops, the China-Eurasia Expo held in Ürümqi, China is attracting fewer potential visitors. A nationwide survey of 2034 residents from 31 provinces and municipalities in China was conducted to examine the relation between the distance to respondents’ city of residence from Ürümqi and their levels of concern for safety and security concerning the Expo. The two were found to be positively related: the closer the respondents lived to Ürümqi, the less concerned they were with the safety and security of the Expo. This is consistent with the “psychological typhoon eye” effect, which states that people living closer to the center of an unfortunate event (whether natural or man-made hazards) are less concerned with the event’s negative consequences. This effect appears to hold for terrorism. There are implications of this finding for international counter-terrorism practice, tourism, and research.
Women experience both physical and psychological changes during different phases of the menstrual cycle (MC), which can affect their decision making. The present study aims to investigate the impact of the MC on women’s preferences for conspicuous consumption. In three studies, women in the low-fertility phase were found to be more inclined toward conspicuous consumption, with the MC effect on conspicuous consumption being mediated by the extent of pride. We assumed that women in the low-fertility phase would feel less proud due to an evolutionary drive and that they would consume conspicuous products as a means of compensation. Meanwhile, women who were only children did not manifest such behavior. We infer that women from one-child families may have a greater sense of security and confidence, which buffers the mediating effect. This research contributes to both evolutionary psychology and marketing research and provides new insights for future studies.
Late watergrass [Echinochloa phyllopogon (Stapf) Koso-Pol.] is one of the most persistent weeds in rice fields and shows resistance to some acetolactate synthase (ALS)-inhibiting herbicides, such as penoxsulam. Previous studies of E. phyllopogon’s herbicide resistance have focused on non–target site resistance mechanisms. In this study, E. phyllopogon populations from Heilong Jiang Province, China, that were possibly resistant to penoxsulam were used to identify the target site–based mechanisms of resistance. Population HSRH-520 showed a 25.4-fold higher resistance to penoxsulam than the sensitive population, HSRH-538. HSRH-520 was resistant to other ALS inhibitors, with resistance indexes ranging from 17.1 to 166. Target-gene sequence analysis revealed two different ALS genes in E. phyllopogon; a Pro-197-Ser substitution occurred in the ALS-2 gene of HSRH-520. In vitro activity assays revealed that the penoxsulam concentrations required to inhibit 50% of the ALS activity were 13.7 times higher in HSRH-520 than in HSRH-538. Molecular-docking tests showed that the Pro-197-Ser mutation reduced the binding affinity between ALS and ALS inhibitors belonging to the triazolopyrimidine, sulfonylaminocarbonyltriazolinone, and sulfonylurea families, and there were almost no effects on binding affinity when the ALS inhibitors were of the pyrimidinylthiobenzoate and imidazolinone families. Overall, the results indicated and verified that the Pro-197-Ser mutation leads to increased ALS activity by reducing the binding affinity of the inhibitor and ALS. This is the first report on the Pro-197-Ser mutation in the complete ALS gene of E. phyllopogon and will aid future research of target site–based resistance mechanisms of E. phyllopogon to ALS inhibitors.
There is limited experience about transcatheter closure of doubly committed subarterial ventricular septal defects with Amplatzer ductal occluder.
Methods:
Between March, 2015 and July, 2017, a total of 22 patients with doubly committed subarterial ventricular septal defects received transcatheter closure using Amplatzer ductal occluder and underwent clinical follow-up for at least 6 months.
Results:
Device implantation was finally successful in 21 (95.4%) patients despite failed occlusion in one patient and intra-procedural replacement of unsuitable occluders in four (19.0%) patients. In mean 12.3 months of follow-up, there were no major complications (death, aortic valve or sinus rupture, device dislocation or embolisation, grade 2 new-onset aortic regurgitation, etc.), resulting in clinical occlusion success of 95.4%. Mechanical haemolysis occurred in one patient and resolved with medication. Residual shunt was observed in 11 (52.4%) patients (9 mild, 2 moderate-severe) post-procedurally, 14 (66.7%) patients (12 mild, 2 moderate-severe) in hospital stay, and 2 (9.5%) patients (2 mild, 0 moderate-severe) at the last follow-up. Device-induced new-onset aortic regurgitation was found in nine (42.8%) patients (9 mild, 0 moderate-severe) post-procedurally and in hospital stay, which was resolved in two (9.5%) patients and unchanged in seven (33.3%) patients at the last follow-up. Another four (19.0%) patients newly developed mild aortic regurgitation during follow-up.
Conclusions:
Transcatheter closure of doubly committed subarterial ventricular septal defects with Amplatzer ductal occluder is technically feasible in the selected patients. However, further study is needed to confirm its long-term clinical outcomes.
Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] is acknowledged to be the most troublesome weed in rice fields in Anhui and Jiangsu provinces of China. It cannot be effectively controlled using certain acetolactate synthase (ALS)-inhibiting herbicides, including penoxsulam. Echinochloa crus-galli samples with suspected resistance to penoxsulam were collected to identify the target site–based mechanism underlying this resistance. Populations AXXZ-2 and JNRG-2 showed 33- and 7.3-fold resistance to penoxsulam, respectively, compared with the susceptible JLGY-3 population. Cross-resistance to other ALS inhibitors was reported in AXXZ-2 but not in JNRG-2, and occasionally showed higher sensitivity than JLGY-3. In vitro ALS activity assays revealed that penoxsulam concentrations required to inhibit 50% of ALS activity were 11 and 5.2 times greater in AXXZ-2 and JNRG-2, respectively, than in JLGY-3. DNA and predicted amino acid sequence analyses of ALS revealed Ala-205-Val and Ala-122-Gly substitutions in AXXZ-2 and JNRG-2, respectively. Our results indicate that these substitutions in ALS are at least partially responsible for resistance to penoxsulam.
In the synthesis of metallic nanocrystals (NCs) using a high-temperature colloidal approach, the competition between deposition and diffusion of “free atom (or clusters)” plays an important role as it can direct the morphology of NCs during their evolution. This competition is closely associated with some dynamic conditions such as heat and mass transfer. Stirring speed and ramp rate of heating are two factors that greatly impact the heat and mass transfer processes and consequently determine the morphology of the products but rarely discussed in most synthetic protocols. Herein, we study the syntheses of Pt-M (M = Ni, Fe) NCs as model reactions, showing that a low stirring speed and high ramp rate of heating result in ununiform pod-like NCs, whereas the inverse conditions promote NCs in a uniform shape. This observation can be plausibly explained using a competition mechanism between the deposition and diffusion of the newly reduced atoms during a stage of the NC’s growth.
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.
We present laboratory measurement and theoretical analysis of silicon K-shell lines in plasmas produced by Shenguang II laser facility, and discuss the application of line ratios to diagnose the electron density and temperature of laser plasmas. Two types of shots were carried out to interpret silicon plasma spectra under two conditions, and the spectra from 6.6 Å to 6.85 Å were measured. The radiative-collisional code based on the flexible atomic code (RCF) is used to identify the lines, and it also well simulates the experimental spectra. Satellite lines, which are populated by dielectron capture and large radiative decay rate, influence the spectrum profile significantly. Because of the blending of lines, the traditional $G$ value and $R$ value are not applicable in diagnosing electron temperature and density of plasma. We take the contribution of satellite lines into the calculation of line ratios of He-$\unicode[STIX]{x1D6FC}$ lines, and discuss their relations with the electron temperature and density.
Suprathermal electrons produced by laser–plasma interactions at 0.53-μm laser wavelength have been investigated using 19 electron spectrometers. The targets were 2- and 10-μm-thick Al foils, while the laser average intensities were 2 × 1013 and 7 × 1014 W/cm2. A double temperature distribution was observed in the electron energy spectrum: the lower electron temperature was below 25 keV, whereas the higher was ~50 keV. The angular distribution of the total suprathermal electron energy approximately obeyed the Gaussian distribution, peaking along the k vector of the incident laser beam for perpendicular incidence. Furthermore, the conversion rate of laser energy into escaped suprathermal electron energy over the π sr solid angle was ~10−4 at $\sim \!\!10^{14} \; {\rm W}/{\rm c}{\rm m}^{\rm 2}$, increasing almost linearly with the laser intensity.