We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This Roundtable marks the beginning of a new era for the Journal of British Studies (JBS). Volume 63, issue 4, October 2024, was the last traditional issue printed on paper. No longer will members of the North American Conference on British Studies receive a bound volume quarterly in the mail. We fully understand that for many of our readers the end of print is emotionally wrought, and it constitutes a loss that is tangible and personal. We know that many people enjoy reading the journal from cover to cover, or dipping in and out, and then archiving it on their bookshelves for future use. In using the journal in this way, our readers have cherished JBS as a material object. As scholars born into an age of mass communication, cheap print, long distance shipping, and widespread literacy, we have taken the format of the academic journal for granted. But as historians we know better than anyone that the only thing constant is change. This Roundtable demonstrates that print—what it is, what it enables, what it means—has always been both capacious and contentious. As editors, we hope these essays spark a critical consideration of the age of print and encourage us to move forward into the new era together, innovating in the ways we produce, disseminate, and consume knowledge.
Early elimination of poor crosses based on an objective criterion allows increased allocation of resources only to a few promising crosses for identifying superior recombinant inbred lines (RILs) for use as pure-line cultivars in self-pollinated crops. Early generation (F2:3) prediction of frequency of superior RILs that could be derived from advanced generations of crosses is one such criterion. We predicted the frequency of transgressive RILs from two horse gram crosses (namely HPKM 320 × CRIDA18-R and IC 361290 × Palem 1) for primary branches per plant, pods per plant, pod weight per plant and grain weight per plant based on mid parental value, additive genetic effects and additive genetic variance estimated from trait means of parents, and their F2 and F2:3 generations. The predicted frequency of RILs that transgressed better parent/two checks varied with the cross and the trait within a cross. The frequencies of transgressive RILs predicted from IC 361290 × Palem 1 were higher than those predicted from HPKM 320 × CRIDA 18-R for three of the four traits. As expected, the minimum population size required to recover the transgressive RILs predicted from IC 361290 × Palem 1 was relatively smaller than that from IC 361290 × Palem 1. Increased allocation of resources for handling segregating populations derived from IC 361290 × Palem 1 is expected to result in superior RILs for use as cultivars. We believe that the objective criterion used in our study is handy in identifying superior RILs in early segregating populations derived from a few promising crosses.
Mungbean yellow mosaic virus (MYMV) disease is one of the most devastating biotic constraints of mungbean production in India. Dependable knowledge on the number and mode of action of genes controlling resistance to MYMV disease is one of the keys to develop resistant cultivars. The F1s of four crosses derived from four MYMV resistant genotypes × one highly susceptible genotype, their parents, F2s and F3s along with a susceptible check were screened for responses to MYMV disease following the infector-row technique under natural infection conditions. A good fit of F2 population segregation to the hypothesized ratio of 15 susceptible:1 resistant and that of F3 population segregation to the expected ratio of 55 susceptible:9 resistant at 55 days after planting confirmed the involvement of two recessive genes in imparting resistance to MYMV disease.
Graphene specimens produced by chemical vapor deposition usually show p-type characteristics and significant hysteresis in ambient conditions. Among many methods, current annealing appears to be a better way of cleaning the sample due to the possibility of in-situ annealing in the measurement setup. However, long-time current annealing could increase defects in the underlying substrate. Studying the hysteresis with different anneal currents in a graphene device is, therefore, a topic of interest. In this experimental work, we investigate electron/hole transport in a graphene sample in the form of a Hall bar device with a back gate, where the graphene was prepared using chemical vapor deposition on copper foils. We study the hysteresis before and after current annealing the sample by cooling down to a temperature of 35 Kfrom room temperature with a back-gate bias in a closed cycle refrigerator.
To determine the effect of graft choice (allograft, bone-patellar tendon-bone autograft, or hamstring autograft) on deep tissue infections following anterior cruciate ligament (ACL) reconstructions.
DESIGN
Retrospective cohort study.
SETTING AND POPULATION
Patients from 6 US health plans who underwent ACL reconstruction from January 1, 2000, through December 31, 2008.
METHODS
We identified ACL reconstructions and potential postoperative infections using claims data. A hierarchical stratified sampling strategy was used to identify patients for medical record review to confirm ACL reconstructions and to determine allograft vs autograft tissue implanted, clinical characteristics, and infection status. We estimated infection rates overall and by graft type. We used logistic regression to assess the association between infections and patients’ demographic characteristics, comorbidities, and choice of graft.
RESULTS
On review of 1,452 medical records, we found 55 deep wound infections. With correction for sampling weights, infection rates varied by graft type: 0.5% (95% CI, 0.3%-0.8%) with allografts, 0.6% (0.1%–1.5%) with bone-patellar tendon-bone autografts, and 2.5% (1.9%–3.1%) with hamstring autograft. After adjusting for potential confounders, we found an increased infection risk with hamstring autografts compared with allografts (odds ratio, 5.9; 95% CI, 2.8–12.8). However, there was no difference in infection risk among bone-patellar tendon-bone autografts vs allografts (odds ratio, 1.2; 95% CI, 0.3–4.8).
CONCLUSIONS
The overall risk for deep wound infections following ACL reconstruction is low but it does vary by graft type. Infection risk was highest in hamstring autograft recipients compared with allograft recipients and bone-patellar tendon-bone autograft recipients.
Proliferating trichilemmal tumour (PTT) is a benign tumour originating from the outer root sheath of a hair follicle. In rare instances, malignant transformation has been reported, evidenced by regional or distant metastases. Malignant transformation of PTT is often confused with squamous cell carcinoma. PTT usually occur as a solitary lesion on the scalp. It was first described as a proliferating epidermoid cyst by Wilson-Jones in 1966.
Case description
A female patient presented with a growing lesion on scalp in the right parietal region. She had already undergone excision for the same 8 months ago. The cyst was surgically removed and scalp was treated with electron therapy using a field dimension of 8×8 cm in 2011. Now, the patient is disease free with good quality of life.
Conclusion
Oncologists can consider electron therapy in management of PTT. This can improve cosmesis and quality of life of these patients.
To explore the feasibility of identifying anterior cruciate ligament (ACL) allograft implantations and infections using claims.
Design.
Retrospective cohort study.
Methods.
We identified ACL reconstructions using procedure codes at 6 health plans from 2000 to 2008. We then identified potential infections using claims-based indicators of infection, including diagnoses, procedures, antibiotic dispensings, specialty consultations, emergency department visits, and hospitalizations. Patients’ medical records were reviewed to determine graft type, validate infection status, and calculate sensitivity and positive predictive value (PPV) for indicators of ACL allografts and infections.
Results.
A total of 11,778 patients with codes for ACL reconstruction were identified. After chart review, PPV for ACL reconstruction was 96% (95% confidence interval [CI], 94%–97%). Of the confirmed ACL reconstructions, 39% (95% CI, 35%–42%) used allograft tissues. The deep infection rate after ACL reconstruction was 1.0% (95% CI, 0.7%–1.4%). The odds ratio of infection for allografts versus autografts was 0.41 (95% CI, 0.19–0.78). Sensitivity of individual claims-based indicators for deep infection after ACL reconstruction ranged from 0% to 75% and PPV from 0% to 100%. Claims-based infection indicators could be combined to enhance sensitivity or PPV but not both.
Conclusions.
While claims data accurately identify ACL reconstructions, they poorly distinguish between allografts and autografts and identify infections with variable accuracy. Claims data could be useful to monitor infection trends after ACL reconstruction, with different algorithms optimized for different surveillance goals.
In this paper we prove a structure theorem for the class of $\mathcal{AN}$-operators between separable, complex Hilbert spaces which is similar to that of the singular value decomposition of a compact operator. Apart from this, we show that a bounded operator is $\mathcal{AN}$ if and only if it is either compact or a sum of a compact operator and scalar multiple of an isometry satisfying some condition. We obtain characterizations of these operators as a consequence of this structure theorem and deduce several properties which are similar to those of compact operators.
Using epitaxy and the misfit strain imposed by an underlying substrate, it is possible to elastically strain oxide thin films to percent levels—far beyond where they would crack in bulk. Under such strains, the properties of oxides can be dramatically altered. In this article, we review the use of elastic strain to enhance ferroics, materials containing domains that can be moved through the application of an electric field (ferroelectric), a magnetic field (ferromagnetic), or stress (ferroelastic). We describe examples of transmuting oxides that are neither ferroelectric nor ferromagnetic in their unstrained state into ferroelectrics, ferromagnets, or materials that are both at the same time (multiferroics). Elastic strain can also be used to enhance the properties of known ferroic oxides or to create new tunable microwave dielectrics with performance that rivals that of existing materials. Results show that for thin films of ferroic oxides, elastic strain is a viable alternative to the traditional method of chemical substitution to lower the energy of a desired ground state relative to that of competing ground states to create materials with superior properties.
We present results from a spectral line survey of the young stellar object IRAS 17470-2853, undertaken to examine chemical changes during the evolution from hot molecular cores to ultracompact HII regions. Observations were carried out with the Mopra 22 m radio telescope in the frequency range from 86.1 to 92.1 GHz. A total of 21 lines from 9 molecules were detected. Except for CH3CN they are all simple molecules. We compare the results to the ultracompact HII region G34.3+0.15, where spectral line surveys in the frequency range 80–115 GHz and 330–360 GHz have been performed. While the molecular lines detected are similar, their widths and intensities are somewhat narrower and lower, respectively, in IRAS 17470-2853. The typical line width of ˜5 km s−1 indicates relatively quiet or quasi-thermal emission. On the other hand, a significant difference in TA* (HNC)/TA*(HCN) has been found: 0.8 for IRAS 17470-2853 compared to 2.6 for G34.3+0.15. The broad line width of SiO (υ=0, J=2–1), ˜9 km s−1, suggests that IRAS 17470-2853 is experiencing a shock generated by the embedded object. Column densities, or lower limits to them, are derived for observed molecules.
In this work, we study CdTe thin films used in CdTe/CdS solar cells with a substrate configuration, which allows for better control in forming the junction, and the possibility for using flexible non-transparent substrates. We studied the properties of CdTe films grown at 450° and 550°C, with and without a CuxTe layer, and before and after CdCl2 treatment. We analyzed the structural and electro-optical properties using electron backscatter diffraction (EBSD), cathodoluminescence (CL) and X-ray diffraction (XRD), and investigated how the film structure, stress, and defect structure changes with the different growth conditions.
Two soil profiles from northeast India, one from Bakrihawar, an agricultural land, and the other from Chandipur, a virgin hilly area from Assam, are investigated to understand the organic carbon dynamics of the area. Due to frequent flooding, the Bakrihawar soil has accumulated a higher clay content than that of Chandipur. The carbon content is less than 1% by weight in both the sites. The higher clay content is responsible for relatively more soil organic carbon at Bakrihawar. The mean δ13C values at both sites reflect the values of the overlying vegetation. At Bakrihawar, both rice cultivation (C3) and natural C4 grasses contribute to higher mean enriched values of 13C relative to Chandipur, where the surface vegetation is mostly of C3 type. The turnover time of organic carbon, estimated using the residual radiocarbon content, depends strongly on the soil particle size distribution, especially the clay content (i.e. it increases with clay content). To the best of our knowledge, this is the first soil carbon dynamics study of its kind from northeast India.
A CdSxTe1-x layer forms by interdiffusion of CdS and CdTe during the fabrication of thinfilm CdTe photovoltaic (PV) devices. The CdSxTe1-x layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdSxTe1-x region. Further understanding, however, is essential to predict the role of this CdSxTe1-x layer in the operation of CdS/CdTe devices. In this study, CdSxTe1-x alloy films were deposited by radio-frequency magnetron sputtering and coevaporation from CdTe and CdS sources. Both radio-frequency-magnetron-sputtered and coevaporated CdSxTe1-x films of lower S content (x<0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl2 heat treatment at ∼400°C for 5 min. Films sputtered in a 1% O2/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl2 heat treatment. Films sputtered in O2 partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films.
Cd0.9Zn0.1Te (CZT) detector grade crystals were grown from zone refined Cd, Zn, and Te (7N) precursor materials, using the tellurium solvent method. These crystals were grown using a high temperature vertical furnace designed and installed in our laboratory. The furnace is capable of growing up to 8” diameter crystals, and custom pulling and ampoule rotation functions using custom electronics were furnished for this setup. CZT crystals were grown using excess Te as a solvent with growth temperatures lower than the melting temperatures of CZT (1092°C). Tellurium inclusions were characterized through IR transmittance maps for the grown CZT ingots. The crystals from the grown ingots were processed and characterized using I-V measurements for electrical resistivity, thermally stimulated current (TSC), and electron beam induced current (EBIC). Pulse height spectra (PHS) measurements were carried out using a 241Am (59.6 keV) radiation source, and an energy resolution of ~4.2% FWHM was obtained. Our investigation demonstrates high quality detector grade CZT crystals growth using this low temperature solvent method.
GaTe and GaTe:In single crystals were grown from high purity Ga (7N) and zone refined Te (>7N) precursor materials. InSe thin films were deposited by thermal evaporation onto the sulfur passivated GaTe:In substrates at various substrate temperatures from 450K-550K to fabricate p-GaTe:In/n-InSe heterojunction solar cells. Scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and X-ray photoelectron spectroscopy (XPS) were used to characterize GaTe:In crystals and InSe thin film surfaces. The current-voltage characteristics of p-GaTe:In/n-InSe solar cells were measured under dark and under illumination of 75mW/cm2. Dark J-V measurements showed that the reverse saturation current density (J0) decreased from 3.8 x 10-6 A/cm2 to 1.5 x 10-9 A/cm2 and the ideality factor was reduced from 2.04 to 1.15 as a result of surface passivation. Under illumination of 75 mW/cm2, the open-circuit voltage (Voc) increased from 0.54V to 0.68V and short-circuit current density (Jsc) increased from 7.19 mA/cm2 to 8.65 mA/cm2 for solar cells with surface passivated GaTe:In substrates, leading to an increased solar cell efficiency of 5.03%. EPMA measurements revealed that the InSe thin films deposited at 550 K on GaTe:In substrates were near stoichiometric with enhanced grain size contributing also to better solar cell performance.
In this issue we have endeavored to answer the question, “Whither oxide electronics?” This issue provides a framework and perspective on the progress in the field of oxide electronics over the past several decades, as well as the challenges and opportunities in the years to come. Building on the foundations laid by the pioneers in the materials community and spurred by the discovery of high-temperature superconductivity, there has been both tremendous progress in understanding the complex science of oxide electronic materials and the discovery of other fascinating new phenomena, including colossal magnetoresistance, multiferrocity, and two-dimensional electron gases in correlated oxide systems. Thin-film heterostructures provide a pathway to create novel devices and combinations of physical phenomena. Indeed, the ability to synthesize and control oxide heterostructures using sophisticated deposition techniques has become a key enabler of the recent advances in this field. These oxides are beginning to enter mainstream products because of their higher performance, for example, ferroelectric memories and oxides with high dielectric constant for computers that run at higher speed and use less power.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
Description: Epitaxial thin films of the multiferroic BiFeO3 have been grown by molecular beam epitaxy in an adsorption-controlled growth regime where substrate temperature and bismuth oxide over pressure establish phase and stoichiometry control. 30 nm thick BiFeO3 films have been deposited directly on (001) SrTiO3 and SrRuO3/(110) DyScO3, and on (0001) GaN containing a 1 nm thick TiO2 overlayer to enable the epitaxial transition between (0001) GaN and (0001) BiFeO3. Films grown on (001) SrTiO3 possess rocking curves identical to that of the underlying substrate, e.g., a full width at half maximum (FWHM) in ù of 25 arc sec in the best case. This is over 40 times narrower than the best published result for epitaxial BiFeO3 films deposited by any technique. On all of the above substrates, the BiFeO3 films exhibit rhombohedral symmetry. The in-plane epitaxial alignment observed for BiFeO3/TiO2/(0001) GaN differs by a 30° in-plane rotation from that observed in previous work for BiFeO3/SrTiO3/TiO2/(0001) GaN. Specifically, our (0001) BiFeO3/TiO2/(0001) GaN is oriented in-plane with [10-10]BiFeO3 [11-20]GaN, accompanied by a 180° in-plane rotational twin variant. The results of this work will be discussed in the context of the interfacial and crystallographic orientation dependence on the ferroelectric, antiferromagnetic, and dielectric properties of this multiferroic.
The VO2 phase of vanadium oxide is known to exhibit large changes in the electrical and optical properties in the vicinity of the structural phase transition at 68C. Here, we report on the fabrication and study of thin film vanadium oxide (VO2) devices deposited on R-plane sapphire. Thin films prepared by electron beam evaporation have been processed by photolithography into two-terminal strips for electrical measurements. Measurements on such specimens exhibit reproducibility across a chip, in addition to hysteretic transport, and a one-to-two orders of magnitude change in the resistance in the vicinity of the structural transition. In sum, these experiments show that e-beam evaporation of VO2 constitutes a simple and useful approach to realizing devices from this technologically important material.