We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine the prevalence of overweight and obesity in patients with severe mental disorders (SMD) and the factors associated with their socio-demographic and disease characteristics in a cross-sectional population-based study.
Design:
This analysis examined the prevalence of overweight and obesity in 14 868 managed SMD patients in an urban area of Shenzhen city based on data from the health information monitoring system in 2021. Multivariate logistic regression were used to identify the factors associated with the prevalence of overweight and obesity in patients with SMD.
Setting:
China.
Participants:
14 868 patients with SMD.
Results:
The prevalence of overweight and obesity in patients with SMD in this study was 32·6 % and 16·1 %, respectively. In multivariate analysis, married status, Shenzhen household registration, management durations of 5–10 years and >10 years, participation in family physician services, taking clozapine or aripiprazole, FPG > 6·1 mmol/l, hypertension, TC ≥ 5·2 mmol/l, TG ≥ 1·7 mmol/l, and more frequent follow-ups in the past year were associated with higher odds of overweight and obesity. Compared to their respective reference categories, living with parents, spouse and children, taking risperidone, aripiprazole, amisulpride and perphenazine, FPG > 6·1 mmol/l, hypertension, TC ≥ 5·2 mmol/l, TG ≥ 1·7 mmol/l, and more frequent follow-ups in the past year were associated with higher odds of obesity.
Conclusion:
We observed a high prevalence of overweight and obesity in patients with SMD in this study. The findings highlight the need for integrated management of overweight and obesity risk factors among patients with SMD.
Two-part framework and the Tweedie generalized linear model (GLM) have traditionally been used to model loss costs for short-term insurance contracts. For most portfolios of insurance claims, there is typically a large proportion of zero claims that leads to imbalances, resulting in lower prediction accuracy of these traditional approaches. In this article, we propose the use of tree-based methods with a hybrid structure that involves a two-step algorithm as an alternative approach. For example, the first step is the construction of a classification tree to build the probability model for claim frequency. The second step is the application of elastic net regression models at each terminal node from the classification tree to build the distribution models for claim severity. This hybrid structure captures the benefits of tuning hyperparameters at each step of the algorithm; this allows for improved prediction accuracy, and tuning can be performed to meet specific business objectives. An obvious major advantage of this hybrid structure is improved model interpretability. We examine and compare the predictive performance of this hybrid structure relative to the traditional Tweedie GLM using both simulated and real datasets. Our empirical results show that these hybrid tree-based methods produce more accurate and informative predictions.
The present study was conducted to test the hypothesis that dietary supplementation with a nano chitosan–zinc complex (CP–Zn, 100 mg/kg Zn) could alleviate weaning stress in piglets challenged with enterotoxigenic Escherichia coli K88 by improving growth performance and intestinal antioxidant capacity. The in vivo effects of CP–Zn on growth performance variables (including gastrointestinal digestion and absorption functions and the levels of key proteins related to muscle growth) and the antioxidant capacity of the small intestine (SI) were evaluated in seventy-two weaned piglets. The porcine jejunal epithelial cell line IPEC-J2 was used to further investigate the antioxidant mechanism of CP–Zn in vitro. The results showed that CP–Zn supplementation increased the jejunal villus height and decreased the diarrhoea rate in weaned piglets. CP–Zn supplementation also improved growth performance (average daily gain and average daily feed intake), increased the activity of carbohydrate digestion-related enzymes (amylase, maltase, sucrase and lactase) and the mRNA expression levels of nutrient transporters (Na+-dependent glucose transporter 1, glucose transporter type 2, peptide transporter 1 and excitatory amino acid carrier 1) in the jejunum and up-regulated the expression levels of mammalian target of rapamycin (mTOR) pathway-related proteins (insulin receptor substrate 1, phospho-mTOR and phospho-p70S6K) in muscle. In addition, CP–Zn supplementation increased glutathione content, enhanced total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-px) activity, and reduced malondialdehyde (MDA) content in the jejunum. Furthermore, CP–Zn decreased the content of MDA and reactive oxygen species, enhanced the activity of T-SOD and GSH-px and up-regulated the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related proteins (Nrf2, NAD(P)H:quinone oxidoreductase 1 and haeme oxygenase 1) in lipopolysaccharide-stimulated IPEC-J2 cells. Collectively, these findings indicate that CP–Zn supplementation can improve growth performance and the antioxidant capacity of the SI in piglets, thus alleviating weaning stress.
Loneliness is increasingly recognised as a serious public health issue worldwide. However, there is scarce research addressing the association between loneliness and suicide in older adults in rural China. We set out to examine loneliness and other psychosocial factors in elderly suicide cases and explore their interaction effects.
Methods
Using a 1 : 1 matched case–control design, data were collected from 242 elderly suicide cases and 242 living community controls by psychological autopsy method in rural China, including demographic characteristics, loneliness, depression, hopelessness and social support. The chi-square automatic interaction detection (CHAID) tree model and multivariable logistic regression analysis were used to explore the relationships of these factors and suicide.
Results
The CHAID tree model showed that loneliness, hopelessness and depressive symptoms were closely associated with completed suicide and that loneliness and hopelessness interacted with each other. The result of multivariable logistic regression showed that individuals who were unemployed [odds ratio (OR) = 2.344; 95% confidence interval (CI): 1.233–4.457], living alone (OR = 2.176; 95% CI: 1.113–4.254), had lower levels of subjective social support (OR = 2.185; 95% CI: 1.243–3.843), experienced depressive symptoms (OR = 6.700; 95% CI: 3.405–13.182), showed higher levels of hopelessness (OR = 7.253; 95% CI: 3.764–13.974) and felt higher levels of hopelessness × higher levels of loneliness (OR = 2.446; 95% CI: 1.089–5.492) were significantly associated with an elevated suicide risk in older people in rural China.
Conclusions
Regular evaluation of loneliness, hopelessness and depression can help detect older adults who are at risk of committing suicide. Interventions should target social support systems, particularly among people living alone, to alleviate feelings of loneliness and hopelessness. Treating depression is also key to preventing suicide among elderly people in rural China.
The microstructure evolution of the directionally solidified NiAl–Cr(Mo) planar eutectic lamellar structure was studied at 1150 °C and times of up to 400 h. The planar eutectic lamellar structure is obtained at the withdrawal rate range of 2.5–7.5 μm/s. The interlamellar spacing decreases gradually with increasing the withdrawal rate. The lamellar termination (like angular or smooth) commonly exists in the as-DS alloy. After high temperature treatment, the lamellar structure at 2.5 μm/s (interlamellar spacing, 3.7 μm) is almost stable, only a little migration of termination occurs at 400 h. When the withdrawal rate increases to 4.5 μm/s, the coarsening and migration of termination occur at 200 h. The adjacently coarsened terminations assemble when the coarsening processes to a certain degree, thus resulting in the formation of the blocky Cr(Mo) phase. Similarly, the above instable phenomenon occurs at 7.5 μm/s. The relevant instability mechanisms are discussed.
Suicide rate among rural elderly is the highest among all age groups in China, yet little is known about the suicide risks in this rapidly growing vulnerable population.
Methods
This matched case–control psychological autopsy study was conducted during June 2014 to September 2015. Consecutive samples of suicides aged 60 or above were identified in three provinces (Shandong, Hunan, and Guangxi) in China. Living comparisons were 1:1 matched with the suicides in age (±3 years old), gender, and living location. Risk factors included demographic characteristics, being left-behind, mental disorder, depressive symptoms, stressful life events, and social support.
Results
A total of 242 suicides and 242 comparisons were enrolled: 135 (55.8%) were male, mean (s.d.) age was 74 (8) years. The most frequently used suicide means were pesticides (125, 51.7%) and hanging (95, 39.3%). Independent risks of suicide included unstable marital status [odds ratio (OR) 4.19, 95% confidence interval (CI) 1.61–10.92], unemployed (compared with employed, OR 4.43, 95% CI 1.09–17.95), depressive symptoms (OR 1.34, 95% CI 1.21–1.48), and mental disorder (OR 6.28, 95% CI 1.75–22.54). Structural equation model indicated that the association between being left-behind and suicide was mediated by mental disorder, depressive symptoms, stressful life events, and social support.
Conclusions
Unstable marital status, unemployed, depressive symptoms, and mental disorder are independent risk factors for suicide in rural elderly. Being left-behind can elevate the suicide risk through increasing life stresses, depressive symptoms, mental disorder, and decreasing social support. Elderly suicide may be prevented by restricting pesticides, training rural physicians, treating mental disorders, mitigating life stress, and enhancing social connection.
The combined effect of B2 phase transfer and grain boundary character on mechanical properties of the Fe–6.5 wt% Si alloy was investigated. The microstructures and textures of the Fe–6.5 wt% Si alloy under four cooling modes were characterized by X-ray diffraction, transmission electron microscope, and electron backscattered diffraction. The results reveal that the maximum nano-hardness value (8.9 GPa) results from the two-step air-cooling sample, while for the two-step water-cooling sample, the minimum value (5.3 GPa) is achieved. The transformation of the B2 phase affected by the water-cooling process is a critical factor in obtaining the lower APB energy and eliminating the brittlenes. A large fraction of the coincidence site lattice boundaries that formed on the sheet experienced the two-step water-cooling process due to a uniform and sharp γ-fiber recrystallization texture comprising the {111} 〈110〉 and {111} 〈112〉 components, which enhances resistance to intercrystalline effect and improves mechanical properties in comparison with the two-step air-cooling process.
Ordered phases and ductility of Fe–6.5 wt% Si magnetic material were investigated under different rolling temperatures, and the constitutive equation of the warm deformation was established. The results show that at high rolling temperature, accompanying with the appearance of some shallow dimples, the intergranular fracture can be transformed into the quasicleavage fracture, which makes the ductility of warm-rolled sheets greatly improved. In the 450–650 °C rolling temperature range, the antiphase domains (APDs) of warm-rolled sheets are cut, the superdislocation density increases greatly with decreasing warm rolling temperatures, resulting in a decrease in APD sizes during warm deformation. Meanwhile, more B2 and DO3 ordered phases occurring in the matrix improve the long range order parameters, thereby significantly reducing ductility of the alloy. The work softening of Fe–6.5 wt% Si alloy is attributed to a contribution combining the sizes of APDs with ordered phases.
As the core materials with excellent soft magnetic properties, Fe–6.5 wt% Si steel was fabricated by using the warm rolling process due to its extremely limited ductility and formability at room temperature. In this work, the effects of warm rolling reduction varying from 50% to 85% on the microstructure, texture, and magnetic properties of sheets were explored. The microstructure and texture evolution at the various processing steps were investigated in detail using optical microscopy, electron backscatter diffraction, and transmission electron microscopy. The results demonstrate that the finer recrystallization grains are accompanied with an increasing warm rolling reduction, and the final annealed sheets are characterized by strong α-fiber and γ-fiber textures. Accordingly, on the whole, as the increase of warm rolling reductions, the values of magnetic induction (B8, B50) in the final annealed sheets increase sharply up to a maximum value and then decrease to a certain value, and the values of iron loss (P15/50, P10/400) increase monotonically.
miR-124, a brain-specific microRNA, was originally considered as a key regulator in neuronal differentiation and the development of the nervous system. Here we showed that miR-124 expression was suppressed in patients with epilepsy and rats after drug induced-seizures. Intrahippocampal administration of a miR-124 duplex led to alleviated seizure severity and prolonged onset latency in two rat models (pentylenetetrazole- and pilocarpine-induced seizures), while miR-124 inhibitor led to shortened onset latency in pilocarpine-induced seizure rat models. Moreover, the result of local field potentials (LFPs) records further demonstrated miR-124 may have anti-epilepsy function. Inhibition of neuronal firing by miR-124 was associated with the suppression of mEPSC, AMPAR- and NMDAR-mediated currents, which were accompanied by decreased surface expression of NMDAR. In addition, miR-124 injection resulted in decreased activity and expression of cAMP-response element-binding protein1 (CREB1). a key regulator in epileptogenesis. A dual-luciferase reporter assay was used to confirm that miR-124 targeted directly the 3′UTR of CREB1 gene and repressed the CREB1 expression in HEK293T cells. Immunoprecipitation studies confirmed that the CREB1 antibody effectively precipitated CREB1 and NMDAR1 but not GLUR1 from rat brain hippocampus. These results revealed a previously unknown function of miR-124 in neuronal excitability and provided a new insight into molecular mechanisms underlying epilepsy.
The concept of a “magnetar” was proposed mainly because of two factors. First, the X-ray luminosity of Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) is larger than the rotational energy loss rate (Lx > Ėrot), and second, the magnetic field strength calculated from “normal method” is super strong. It is proposed that the radiation energy of magnetar comes from its magnetic fields. Here it is argued that the magnetic field strength calculated through the normal method is incorrect at the situation Lx > Ėrot, because the wind braking is not taken into account. Besides, the “anti-magnetar” and some other X-ray and radio observations are difficult to understand with a magnetar model.
Instead of the magnetar, we propose a “quarctar”, which is a crusted quark star in an accretion disk, to explain the observations. In this model, the persistent X-ray emission, burst luminosity, spectrum of AXPs and SGRs can be understood naturally. The radio-emitting AXPs, which are challenging the magnetar, can also be explained by the quarctar model.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.