We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A key step toward understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organisation at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organisation of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex.
Aims
We aimed to evaluate the impact of sex on the spatial organisation of person-specific functional brain networks.
Method
We leveraged person-specific atlases of functional brain networks, defined using non-negative matrix factorisation, in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalised additive models to uncover associations between sex and the spatial layout (topography) of personalised functional networks (PFNs). We also trained support vector machines to classify participants’ sex from multivariate patterns of PFN topography.
Results
Sex differences in PFN topography were greatest in association networks including the frontoparietal, ventral attention and default mode networks. Machine learning models trained on participants’ PFNs were able to classify participant sex with high accuracy.
Conclusions
Sex differences in PFN topography are robust, and replicate across large-scale samples of youth. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Objectives/Goals: Identifying and indexing rare disease studies is labor intensive, especially in research centers with a large number of trials. To address this gap, we applied natural language processing (NLP) and visualization techniques to develop an efficient pipeline and user-friendly web interface. Our goal is to offer the rare disease study identification (RDSI) tool for adoption by other sites. Methods/Study Population: The RDSI retrieves study information (short and long titles, study abstract) from the IRB system. These descriptive fields are then processed by the MetaMap Lite NLP program for identifying disease terms and standardizing them to UMLS concepts. By terminology identifier mapping, the diseases intersecting with concepts in rare disease databases (Genetic and Rare Disease program and Orphanet) are further scored to pinpoint studies that focus on a rare disease. The web interface displays a scatter bubble chart as an overview of all the rare diseases, with each bubble size proportional to the number of studies for that disease. In addition to the visual navigation, users can search studies by disease name, PI, or IRB number. Search results contain detailed study information as well as the evidence used by algorithms of the pipeline. Results/Anticipated Results: The RDSI identification results and functions were verified manually and spot-checked by several study investigators. The web interface is a self-contained solution available to our staff for various use cases like reporting or environment scan. We have built in a versioning mechanism that logs the date of each major result in the process. Therefore, even as the rare disease data sources evolve over time, we will be able to preserve any historical context or perform updates as needed. The RDSI outputs are replicated to Mayo Clinic’s enterprise data warehouse daily, allowing tech-savvy users to leverage any useful intermediate results at the backend. We anticipate the performance of the rare disease identification to be further enhanced by employing the advancements in AI technology. Discussion/Significance of Impact: The RDSI represents an informatics solution that offers efficiency in identifying and navigating rare disease clinical studies. It features the use of public databases and open-source tools, manifesting return on investment from the broad translational science ecosystem. These considerations are informative and adoptable by other institutions.
The variable stator vanes (VSV) are a set of typical spatial linkage mechanisms widely used in the variable cycle engine compressor. Various factors influence the angle adjustment precision of the VSV, leading to the failure of the mechanism. The reliability analysis of VSV is a complex task due to the involvement of multiple components, high dimensionality input and computational inefficiency. Considering the hierarchical characteristics of VSV structure, we propose a novel multi-layer Kriging surrogate (MLKG) for the reliability analysis of VSV. The MLKG combines multiple Kriging surrogate models arranged in a hierarchical structure. By breaking the problem down into more minor problems, MLKG works by presenting each small problem as a Kriging model and reducing the input dimension of the sub-layer Kriging model. In this way, the MLKG can capture the complex interactions between the inputs and outputs of the problem while maintaining a high degree of accuracy and efficiency. This study proves the error propagation process of MLKG. To evaluate MLKG’s accuracy, we test it on two typical high-dimensional non-linearity functions (Rosenbrock and Michalewicz function). We compared MLKG with some contemporary KG surrogate modeling techniques using mean squared error (MSE) and R square (${R^2}$). Results show that MLKG achieves an excellent level of accuracy for reliability analysis in high-dimensional problems with a small number of sample points.
Sustainability is becoming a major strategic driver within the aviation industry, which has moved from providing primarily economic benefits to delivering the ‘triple bottom line’, including social and environmental impact as well as financial performance. Sustainable aviation is also being tracked by the International Civil Aviation Organisation (ICAO) Global Collation for Sustainable Aviation. Operations and Infrastructure is an important near-term opportunity to deliver sustainability benefits. Digital Technologies, Integrated Vehicle Health Management (IVHM) and Maintenance Repair and Overhaul (MRO) play a prominent role in implementing these benefits, with a particular focus on operational efficiencies. As part of this, the sustainable smart hangar of the future is a concept that is becoming more and more important in forming the future of the aviation industry. The Hangar of the Future is an excellent opportunity for innovation, combining the progress in manufacturing, materials, robotics and artificial intelligence technologies. Succeeding in developing a hangar with these characteristics will provide us with potential benefits ranging from reduced downtime and costs to improved safety and environmental impact. This work explores some of the key features related to the sustainable smart hangar of the future by discussing research that takes place in DARTeC’s (Digital Aviation Research and Technology Centre) hangar led by the IVHM Centre in Cranfield. Additionally, the paper touches on some longer-term aspirations.
The laboratory generation and diagnosis of uniform near-critical-density (NCD) plasmas play critical roles in various studies and applications, such as fusion science, high energy density physics, astrophysics as well as relativistic electron beam generation. Here we successfully generated the quasistatic NCD plasma sample by heating a low-density tri-cellulose acetate (TCA) foam with the high-power-laser-driven hohlraum radiation. The temperature of the hohlraum is determined to be 20 eV by analyzing the spectra obtained with the transmission grating spectrometer. The single-order diffraction grating was employed to eliminate the high-order disturbance. The temperature of the heated foam is determined to be T = 16.8 ± 1.1 eV by analyzing the high-resolution spectra obtained with a flat-field grating spectrometer. The electron density of the heated foam is about under the reasonable assumption of constant mass density.
The Stricker Learning Span (SLS) is a computer-adaptive word list memory test specifically designed for remote assessment and self-administration on a web-based multi-device platform (Mayo Test Drive). Given recent evidence suggesting the prominence of learning impairment in preclinical Alzheimer’s disease (AD), the SLS places greater emphasis on learning than delayed memory compared to traditional word list memory tests (see Stricker et al., Neuropsychology in press for review and test details). The primary study aim was to establish criterion validity of the SLS by comparing the ability of the remotely-administered SLS and inperson administered Rey Auditory Verbal Learning Test (AVLT) to differentiate biomarkerdefined groups in cognitively unimpaired (CU) individuals on the Alzheimer’s continuum.
Participants and Methods:
Mayo Clinic Study of Aging CU participants (N=319; mean age=71, SD=11; mean education=16, SD=2; 47% female) completed a brief remote cognitive assessment (∼0.5 months from in-person visit). Brain amyloid and brain tau PET scans were available within 3 years. Overlapping groups were formed for 1) those on the Alzheimer’s disease (AD) continuum (A+, n=110) or not (A-, n=209), and for 2) those with biological AD (A+T+, n=43) vs no evidence of AD pathology (A-T-, n=181). Primary neuropsychological outcome variables were sum of trials for both the SLS and AVLT. Secondary outcome variables examined comparability of learning (1-5 total) and delay performances. Linear model ANOVAs were used to investigate biomarker subgroup differences and Hedge’s G effect sizes were derived, with and without adjusting for demographic variables (age, education, sex).
Results:
Both SLS and AVLT performances were worse in the biomarker positive relative to biomarker negative groups (unadjusted p’s<.05). Because biomarker positive groups were significantly older than biomarker negative groups, group differences were attenuated after adjusting for demographic variables, but SLS remained significant for A+ vs A- and for A+T+ vs A-T- comparisons (adjusted p’s<.05) and AVLT approached significance (p’s .05-.10). The effect sizes for the SLS were slightly better (qualitatively, no statistical comparison) for separating biomarker-defined CU groups in comparison to AVLT. For A+ vs A- and A+T+ vs A-T- comparisons, unadjusted effect sizes for SLS were -0.53 and -0.81 and for AVLT were -0.47 and -0.61, respectively; adjusted effect sizes for SLS were -0.25 and -0.42 and for AVLT were -0.19 and -0.26, respectively. In secondary analyses, learning and delay variables were similar in terms of ability to separate biomarker groups. For example, unadjusted effect sizes for SLS learning (-.80) was similar to SLS delay (.76), and AVLT learning (-.58) was similar to AVLT 30-minute delay (-.55) for the A+T+ vs AT- comparison.
Conclusions:
Remotely administered SLS performed similarly to the in-person-administered AVLT in its ability to separate biomarker-defined groups in CU individuals, providing evidence of criterion validity. The SLS showed significantly worse performance in A+ and A+T+ groups (relative to A- and A-T-groups) in this CU sample after demographic adjustment, suggesting potential sensitivity to detecting transitional cognitive decline in preclinical AD. Measures emphasizing learning should be given equal consideration as measures of delayed memory in AD-focused studies, particularly in the preclinical phase.
Mayo Test Drive (MTD): Test Development through Rapid Iteration, Validation and Expansion, is a web-based multi-device (smartphone, tablet, personal computer) platform optimized for remote self-administered cognitive assessment that includes a computer-adaptive word list memory test (Stricker Learning Span; SLS; Stricker et al., 2022; Stricker et al., in press) and a measure of processing speed (Symbols Test: Wilks et al., 2021). Study aims were to determine criterion validity of MTD by comparing the ability of the MTD raw composite and in-person administered cognitive measures to differentiate biomarkerdefined groups in cognitively unimpaired (CU) individuals on the Alzheimer’s continuum.
Participants and Methods:
Mayo Clinic Study of Aging CU participants (N=319; mean age=71, SD=11, range=37-94; mean education=16, SD=2, range=6-20; 47% female) completed a brief remote cognitive assessment (∼0.5 months from in-person visit). Brain amyloid and brain tau PET scans were available within 3 years. Overlapping groups were formed for 1) those on the Alzheimer’s disease (AD) continuum (A+, n=110) or not (A-, n=209), and for 2) those with biological AD (A+T+, n=43) or with no evidence of AD pathology (A-T-, n=181). Primary outcome variables were MTD raw composite (SLS sum of trials + an accuracy-weighted Symbols response time measure), Global-z (average of 9 in-person neuropsychological measures) and an in-person screening measure (Kokmen Short Test of Mental Status, STMS; which is like the MMSE). Linear model ANOVAs were used to investigate biomarker subgroup differences and Hedge’s G effect sizes were derived, with and without adjusting for demographic variables (age, education, sex).
Results:
Remotely administered MTD raw composite showed comparable to slightly larger effect sizes compared to Global-z. Unadjusted effect sizes for MTD raw composite for differentiating A+ vs. A- and A+T+ vs. A-T- groups, respectively, were -0.57 and -0.84 and effect sizes for Global-z were -0.54 and -0.73 (all p’s<.05). Because biomarker positive groups were significantly older than biomarker negative groups, group differences were attenuated after adjusting for demographic variables, but MTD raw composite remained significant for A+T+ vs A-T- (adjusted effect size -0.35, p=.007); Global-z did not reach significance for A+T+ vs A-T- (adjusted effect size -0.19, p=.08). Neither composite reached significance for adjusted analyses for the A+ vs A- comparison (MTD raw composite adjusted effect size= -.22, p=.06; Global-z adjusted effect size= -.08, p=.47). Results were the same for an alternative MTD composite using traditional z-score averaging methods, but the raw score method is preferred for comparability to other screening measures. The STMS screening measure did not differentiate biomarker groups in any analyses (unadjusted and adjusted p’s>.05; d’s -0.23 to 0.05).
Conclusions:
Remotely administered MTD raw composite shows at least similar ability to separate biomarker-defined groups in CU individuals as a Global-z for person-administered measures within a neuropsychological battery, providing evidence of criterion validity. Both the MTD raw composite and Global-z showed greater ability to separate biomarker positive from negative CU groups compared to a typical screening measure (STMS) that was unable to differentiate these groups. MTD may be useful as a screening measure to aid early detection of Alzheimer’s pathological changes.
Flux emergence at different spatial scales and with different amounts of flux has been studied using radiative magnetohydrodynamics (rMHD) simulations. We use the radiative MHD code MURaM to simulate the emergence of an untwisted magnetic flux tube of ephemeral region scale with a density nonuniformity into a background atmosphere with a small unipolar open field. We find that the tube rises to the photosphere, forming complex loop structures seen in synthetic Atmospheric Imaging Assembly(AIA) 171 Å images. The atmosphere reaches 105K at 3Mm above the surface. Our simulation provides a reference example of a less twisted ephemeral region emergence and the atmospheric response.
The Stricker Learning Span (SLS) is a computer-adaptive digital word list memory test specifically designed for remote assessment and self-administration on a web-based multi-device platform (Mayo Test Drive). We aimed to establish criterion validity of the SLS by comparing its ability to differentiate biomarker-defined groups to the person-administered Rey’s Auditory Verbal Learning Test (AVLT).
Method:
Participants (N = 353; mean age = 71, SD = 11; 93% cognitively unimpaired [CU]) completed the AVLT during an in-person visit, the SLS remotely (within 3 months) and had brain amyloid and tau PET scans available (within 3 years). Overlapping groups were formed for 1) those on the Alzheimer’s disease (AD) continuum (amyloid PET positive, A+, n = 125) or not (A-, n = 228), and those with biological AD (amyloid and tau PET positive, A+T+, n = 55) vs no evidence of AD pathology (A−T−, n = 195). Analyses were repeated among CU participants only.
Results:
The SLS and AVLT showed similar ability to differentiate biomarker-defined groups when comparing AUROCs (p’s > .05). In logistic regression models, SLS contributed significantly to predicting biomarker group beyond age, education, and sex, including when limited to CU participants. Medium (A− vs A+) to large (A−T− vs A+T+) unadjusted effect sizes were observed for both SLS and AVLT. Learning and delay variables were similar in terms of ability to separate biomarker groups.
Conclusions:
Remotely administered SLS performed similarly to in-person-administered AVLT in its ability to separate biomarker-defined groups, providing evidence of criterion validity. Results suggest the SLS may be sensitive to detecting subtle objective cognitive decline in preclinical AD.
Water fountains (WFs) are thought to represent an early stage in the morphological evolution of circumstellar envelopes surrounding low- and intermediate-mass evolved stars. These objects are considered to transition from spherical to asymmetric shapes. Despite their potential importance in this transformation process of evolved stars, there are only a few known examples. To identify new WF candidates, we used databases of circumstellar OH (1612 MHz) and H2O (22.235 GHz) maser sources, and compared the velocity ranges of the two maser lines. Finally, 41 sources were found to have a velocity range for the H2O maser line that exceeded that of the OH maser line. Excluding known planetary nebulae and after reviewing the maser spectra in the original literature, we found for 11 sources the exceedance as significant, qualifying them as new WF candidates.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
How does repression on opposition protests affect citizens' institutional trust under dictatorships? There has been a burgeoning literature investigating empirically both long- and short-term impacts of protests and their repression on citizens' political preferences in both democratic and nondemocratic contexts. Yet, the literature tells us relatively little about how the above question could be answered. This paper tries to answer this question by taking advantage of a recent natural experiment in Hong Kong when Beijing suddenly adopted the National Security Law (NSL) in June 2020 to repress dissidents' protest mobilization. Our findings are twofold. First of all, the NSL drove a wedge in the Hong Kong society by making the pro-establishment camp more satisfied with the post-NSL institutions on the one hand, while alienating the pro-democracy camp who lost tremendous trust in them on the other. Second, our study also reveals that one's trust in institutions is significantly associated with the regimes' ability to curb protesters' contentious mobilization. The Hong Kongers who had higher confidence in the NSL to rein in protests would also have a greater level of trust than those who didn't. The effect, however, is substantially smaller among pro-democracy Hong Kongers except for their trust in monitoring institutions. As Beijing is transforming Hong Kong's current institutions from within hopes of bringing about a new political equilibrium, our study helps provide a timely assessment of Hong Kong's institutional landscape and sheds light on how likely this strategy can work.
The coronavirus disease 2019 (COVID-19) pandemic represents an unprecedented threat to mental health. Herein, we assessed the impact of COVID-19 on subthreshold depressive symptoms and identified potential mitigating factors.
Methods
Participants were from Depression Cohort in China (ChiCTR registry number 1900022145). Adults (n = 1722) with subthreshold depressive symptoms were enrolled between March and October 2019 in a 6-month, community-based interventional study that aimed to prevent clinical depression using psychoeducation. A total of 1506 participants completed the study in Shenzhen, China: 726 participants, who completed the study between March 2019 and January 2020 (i.e. before COVID-19), comprised the ‘wave 1’ group; 780 participants, who were enrolled before COVID-19 and completed the 6-month endpoint assessment during COVID-19, comprised ‘wave 2’. Symptoms of depression, anxiety and insomnia were assessed at baseline and endpoint (i.e. 6-month follow-up) using the Patient Health Questionnaire-9 (PHQ-9), Generalised Anxiety Disorder-7 (GAD-7) and Insomnia Severity Index (ISI), respectively. Measures of resilience and regular exercise were assessed at baseline. We compared the mental health outcomes between wave 1 and wave 2 groups. We additionally investigated how mental health outcomes changed across disparate stages of the COVID-19 pandemic in China, i.e. peak (7–13 February), post-peak (14–27 February), remission plateau (28 February−present).
Results
COVID-19 increased the risk for three mental outcomes: (1) depression (odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.04–1.62); (2) anxiety (OR = 1.47, 95% CI: 1.16–1.88) and (3) insomnia (OR = 1.37, 95% CI: 1.07–1.77). The highest proportion of probable depression and anxiety was observed post-peak, with 52.9% and 41.4%, respectively. Greater baseline resilience scores had a protective effect on the three main outcomes (depression: OR = 0.26, 95% CI: 0.19–0.37; anxiety: OR = 1.22, 95% CI: 0.14–0.33 and insomnia: OR = 0.18, 95% CI: 0.11–0.28). Furthermore, regular physical activity mitigated the risk for depression (OR = 0.79, 95% CI: 0.79–0.99).
Conclusions
The COVID-19 pandemic exerted a highly significant and negative impact on symptoms of depression, anxiety and insomnia. Mental health outcomes fluctuated as a function of the duration of the pandemic and were alleviated to some extent with the observed decline in community-based transmission. Augmenting resiliency and regular exercise provide an opportunity to mitigate the risk for mental health symptoms during this severe public health crisis.
Previous studies have revealed associations of meteorological factors with tuberculosis (TB) cases. However, few studies have examined their lag effects on TB cases. This study was aimed to analyse nonlinear lag effects of meteorological factors on the number of TB notifications in Hong Kong. Using a 22-year consecutive surveillance data in Hong Kong, we examined the association of monthly average temperature and relative humidity with temporal dynamics of the monthly number of TB notifications using a distributed lag nonlinear models combined with a Poisson regression. The relative risks (RRs) of TB notifications were >1.15 as monthly average temperatures were between 16.3 and 17.3 °C at lagged 13–15 months, reaching the peak risk of 1.18 (95% confidence interval (CI) 1.02–1.35) when it was 16.8 °C at lagged 14 months. The RRs of TB notifications were >1.05 as relative humidities of 60.0–63.6% at lagged 9–11 months expanded to 68.0–71.0% at lagged 12–17 months, reaching the highest risk of 1.06 (95% CI 1.01–1.11) when it was 69.0% at lagged 13 months. The nonlinear and delayed effects of average temperature and relative humidity on TB epidemic were identified, which may provide a practical reference for improving the TB warning system.
There is limited information concerning the viral load of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols deposited on environmental surfaces and the effectiveness of infection prevention and control procedures on eliminating SARS-CoV-2 contamination in hospital settings. We examined the concentration of SARS-CoV-2 in aerosol samples and on environmental surfaces in a hospital designated for treating severe COVID-19 patients. Aerosol samples were collected by a microbial air sampler, and environmental surfaces were sampled using sterile premoistened swabs at multiple sites. Ninety surface swabs and 135 aerosol samples were collected. Only two swabs, sampled from the inside of a patient's mask, were positive for SARS-CoV-2 RNA. All other swabs and aerosol samples were negative for the virus. Our study indicated that strict implementation of infection prevention and control procedures was highly effective in eliminating aerosol and environmental borne SARS-CoV-2 RNA thereby reducing the risk of cross-infection in hospitals.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
The purpose of this study was to investigated the prevalence child depression in primary schools.
Methods
3685 students from Grade 3 to Grade 5 were selected from 7 primary schools of Pudong district in Shanghai by random and cluster sampling. The study design consisted of a screening stage in which the Center for Epidemiological Studies Depression Scale for Children(CES-DC) were used, and a clinical interview stage in which the K-SADS-present state version (K-SADS) and DSM-IV were used. The diagnoses of depressive disorder were made according the DSM-IV criteria.
Results
The prevalence of children depression was 1.60% (95%CI = 1.19%∼2.00%). The prevalence rate of male(2.08%) was significant higher than that of female (1.09%)(X2=5.40, P = 0.02). The rate of depressive disorder increased with age from 0.57% (8 years old) to 2.47% (12 years old). The prevalence of depression was no significant difference between ages from 8 to 12 years old (X2 = 4.49, P = 0.34).
Conclusion
The prevalence rate of children depression in Shanghai is low. The prevalence of depression among boys is much higher than that of girls.It shows the prevalence of depression is no significant difference between ages from 8 to 12 years old.