We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
Chichilticale is a long-sought-after location on the Coronado expedition route in southeastern Arizona. It is referred to numerous times in documents, and various expedition members stayed there, making it potentially one of the most discoverable of the Coronado expedition camp sites. Nonetheless, it remained lost until recently when data from a variety of sources provided a basis to establish hypotheses that were then tested and retested until Chichilticale was located. This site, 1 km long, has hundreds of Spanish period artifacts related to the 1539–1540 two-month winter encampment established during Melchior Díaz's reconnaissance north to check on Fray Marcos de Niza's report. Crossbow bolt heads, copper lace aglets, caret- or gable-headed nails, copper bells, and many other artifacts and features provide a surprisingly rich archaeological record of this place and of an unexpected and unrecorded battle that changes history for the Sobaipuri O'odham.
Academic health sciences libraries (“libraries”) offer services that span the entire research lifecycle, positioning them as natural partners in advancing clinical and translational science. Many libraries enjoy active and productive collaborations with Clinical and Translational Science Award (CTSA) Program hubs and other translational initiatives like the IDeA Clinical & Translational Research Network. This article explores areas of potential partnership between libraries and Translational Science Hubs (TSH), highlighting areas where libraries can support the CTSA Program’s five functional areas outlined in the Notice of Funding Opportunity. It serves as a primer for TSH and libraries to explore potential collaborations, demonstrating how libraries can connect researchers to services and resources that support the information needs of TSH.
We present deep near-infrared $K_\textrm{s}$-band imaging for 35 of the 53 sources from the high-redshift ($z \gt 2$) radio galaxy candidate sample defined in Broderick et al. (2022, PASA, 39, e061). These images were obtained using the High-Acuity Widefield K-band Imager (HAWK-I) on the Very Large Telescope. Host galaxies are detected for 27 of the sources, with $K_\textrm{s} \approx 21.6$–23.0 mag (2$^{\prime\prime}$ diameter apertures; AB). The remaining eight targets are not detected to a median $3\unicode{x03C3}$ depth of $K_\textrm{s} \approx 23.3$ mag (2$^{\prime\prime}$ diameter apertures). We examine the radio and near-infrared flux densities of the 35 sources, comparing them to the known $z \gt 3$ powerful radio galaxies with 500-MHz radio luminosities $L_{500\,\textrm{MHz}} \gt 10^{27}$ W Hz$^{-1}$. By plotting 150-MHz flux density versus $K_\textrm{s}$-band flux density, we find that, similar to the sources from the literature, these new targets have large radio to near-infrared flux density ratios, but extending the distribution to fainter flux densities. Five of the eight HAWK-I deep non-detections have a median $3\unicode{x03C3}$ lower limit of $K_\textrm{s} \gtrsim 23.8$ mag (1$.\!^{\prime\prime}$5 diameter apertures); these five targets, along with a further source from Broderick et al. (2022, PASA, 39, e061) with a deep non-detection ($K_\textrm{s} \gtrsim 23.7$ mag; $3\unicode{x03C3}$; 2$^{\prime\prime}$ diameter aperture) in the Southern H-ATLAS Regions $K_\textrm{s}$-band Survey, are considered candidates to be ultra-high-redshift ($z \gt 5$) radio galaxies. The extreme radio to near-infrared flux density ratios ($\gt 10^5$) for these six sources are comparable to TN J0924$-$2201, GLEAM J0856$+$0223 and TGSS J1530$+$1049, the three known powerful radio galaxies at $z \gt 5$. For a selection of galaxy templates with different stellar masses, we show that $z \gtrsim 4.2$ is a plausible scenario for our ultra-high-redshift candidates if the stellar mass $M_\textrm{*} \gtrsim 10^{10.5}$ M$_\odot$. In general, the 35 targets studied have properties consistent with the previously known class of infrared-faint radio sources. We also discuss the prospects for finding more UHzRG candidates from wide and deep near-infrared surveys.
We demonstrate the importance of radio selection in probing heavily obscured galaxy populations. We combine Evolutionary Map of the Universe (EMU) Early Science data in the Galaxy and Mass Assembly (GAMA) G23 field with the GAMA data, providing optical photometry and spectral line measurements, together with Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry, providing IR luminosities and colours. We investigate the degree of obscuration in star-forming galaxies, based on the Balmer decrement (BD), and explore how this trend varies, over a redshift range of $0<z<0.345$. We demonstrate that the radio-detected population has on average higher levels of obscuration than the parent optical sample, arising through missing the lowest BD and lowest mass galaxies, which are also the lower star formation rate (SFR) and metallicity systems. We discuss possible explanations for this result, including speculation around whether it might arise from steeper stellar initial mass functions in low mass, low SFR galaxies.
To examine how an advance care planning (ACP) intervention based on structured conversations impacts the relationship between patients with advanced cancer and their nominated Personal Representatives (PRs).
Methods
Within the ACTION research project, a qualitative study was carried out in 4 countries (Italy, United Kingdom, the Netherlands, and Slovenia) to explore the lived experience of engagement with the ACTION Respecting Choices® ACP intervention from the perspectives of patients and their PRs. A phenomenological approach was undertaken.
Results
Our findings show that taking part in the ACTION ACP intervention provides a communicative space for patients and their PRs to share their understanding and concerns about the illness and its consequences. In some cases, this may strengthen relationships by realigning patients’ and PRs’ understanding and expectations and affirming their mutual commitment and support.
Significance of results
The most significant consequence of the ACP process in our study was the deepening of mutual understanding and relationship between some patients and PRs and the enhancement of their sense of mutuality and connectedness in the present. However, being a relational intervention, ACP may raise some challenging and distressing issues. The interpersonal dynamics of the discussion require skilled and careful professional facilitation.
We present the highest resolution and sensitivity $\sim$$1.4\,$GHz continuum observations of the Eridanus supergroup obtained as a part of the Widefield Australian Square Kilometer Array Pathfinder (ASKAP) L-band Legacy All-sky Blind surveY (WALLABY) pre-pilot observations using the ASKAP. We detect 9461 sources at 1.37 GHz down to a flux density limit of $\sim$$0.1$ mJy at $6.1''\times 7.9''$ resolution with a median root mean square of 0.05 mJy beam$^{-1}$. We find that the flux scale is accurate to within 5 % (compared to NVSS at 1.4 GHz). We then determine the global properties of eight Eridanus supergroup members, which are detected in both radio continuum and neutral hydrogen (HI) emission, and find that the radio-derived star formation rates (SFRs) agree well with previous literature. Using our global and resolved radio continuum properties of the nearby Eridanus galaxies, we measure and extend the infrared-radio correlation (IRRC) to lower stellar masses and inferred SFRs than before. We find the resolved IRRC to be useful for: (1) discriminating between active galactic nuclei and star-forming galaxies; (2) identifying background radio sources; and (3) tracing the effects of group environment pre-processing in NGC 1385. We find evidence for tidal interactions and ram-pressure stripping in the HI, resolved spectral index and IRRC morphologies of NGC 1385. There appears to be a spatial coincidence (in projection) of double-lobed radio jets with the central HI hole of NGC 1367. The destruction of polycyclic aromatic hydrocarbons by merger-induced shocks may be driving the observed WISE W3 deficit observed in NGC 1359. Our results suggest that resolved radio continuum and IRRC studies are excellent tracers of the physical processes that drive galaxy evolution and will be possible on larger sample of sources with upcoming ASKAP radio continuum surveys.
Spectral variability offers a new technique to identify small scale structures from scintillation, as well as determining the absorption mechanism for peaked-spectrum (PS) radio sources. In this paper, we present very long baseline interferometry (VLBI) imaging using the long baseline array (LBA) of two PS sources, MRC 0225–065 and PMN J0322–4820, identified as spectrally variable from observations with the Murchison Widefield Array (MWA). We compare expected milliarcsecond structures based on the detected spectral variability with direct LBA imaging. We find MRC 0225–065 is resolved into three components, a bright core and two fainter lobes, roughly 430 pc projected separation. A comprehensive analysis of the magnetic field, host galaxy properties, and spectral analysis implies that MRC 0225–065 is a young radio source with recent jet activity over the last $10^2$–$10^3$ yr. We find PMN J0322–4820 is unresolved on milliarcsecond scales. We conclude PMN J0322–4820 is a blazar with flaring activity detected in 2014 with the MWA. We use spectral variability to predict morphology and find these predictions consistent with the structures revealed by our LBA images.
Dr. Sharpe was a leading eye movement researcher who had also been the editor of this journal. We wish to mark the 10th anniversary of his death by providing a sense of what he had achieved through some examples of his research.
This research communication reports the responses to supplementing dairy cattle with a hydrogenated fat-embedded calcium gluconate feed additive. The role of hindgut health in ruminant performance and wellbeing is an area of growing interest. Various prebiotic compounds have been used to promote lower gut health in various non-ruminant species. Calcium gluconate, a prebiotic compound, has previously been observed to increase milk fat yield when fed to ruminants in a form capable of resisting fermentation in the rumen, though the mechanism(s) behind this response remain unclear. The objective of this study was to compare the responses of lactating cattle to two different supplementation levels of a hydrogenated fat-embedded calcium gluconate (HFCG) product to evaluate a potential linear dose response. Forty-six lactating Holstein dairy cattle were used in a 3 × 3 replicated Latin square design with 28 d periods to evaluate a previously used dose of HFCG (approximately 16 g/d) with both a negative control and a dose of 25 g/d. Supplementation of multiparous animals with 16 g/d HFCG significantly (P < 0.05) increased milk fat yield and content relative to the negative control, and subsequently improved gross feed efficiency (P < 0.05); additionally, the presence of a potential non-linear dose response was observed for these parameters. Responses when supplemented with 25 g/d HFCG did not differ from the negative control. No production responses were observed in primiparous animals. The mode of action of HFCG, in addition to the potential differential response in primiparous animals remains unclear and warrants further investigation.
While unobscured and radio-quiet active galactic nuclei are regularly being found at redshifts
$z > 6$
, their obscured and radio-loud counterparts remain elusive. We build upon our successful pilot study, presenting a new sample of low-frequency-selected candidate high-redshift radio galaxies (HzRGs) over a sky area 20 times larger. We have refined our selection technique, in which we select sources with curved radio spectra between 72–231 MHz from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. In combination with the requirements that our GLEAM-selected HzRG candidates have compact radio morphologies and be undetected in near-infrared
$K_{\rm s}$
-band imaging from the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, we find 51 new candidate HzRGs over a sky area of approximately
$1200\ \mathrm{deg}^2$
. Our sample also includes two sources from the pilot study: the second-most distant radio galaxy currently known, at
$z=5.55$
, with another source potentially at
$z \sim 8$
. We present our refined selection technique and analyse the properties of the sample. We model the broadband radio spectra between 74 MHz and 9 GHz by supplementing the GLEAM data with both publicly available data and new observations from the Australia Telescope Compact Array at 5.5 and 9 GHz. In addition, deep
$K_{\rm s}$
-band imaging from the High-Acuity Widefield K-band Imager (HAWK-I) on the Very Large Telescope and from the Southern Herschel Astrophysical Terahertz Large Area Survey Regions
$K_{\rm s}$
-band Survey (SHARKS) is presented for five sources. We discuss the prospects of finding very distant radio galaxies in our sample, potentially within the epoch of reionisation at
$z \gtrsim 6.5$
.
We present Hubble Space Telescope Wide Field Camera 3 photometric and grism observations of the candidate ultra-high-redshift ($z>7$) radio galaxy, GLEAM J0917–0012. This radio source was selected due to the curvature in its 70–230 MHz, low-frequency Murchison Widefield Array radio spectrum and its faintness in K-band. Follow-up spectroscopic observations of this source with the Jansky Very Large Array and Atacama Large Millimetre Array were inconclusive as to its redshift. Our F105W and F0986M imaging observations detect the host of GLEAM J0917–0012 and a companion galaxy, $\sim$ one arcsec away. The G102 grism observations reveal a single weak line in each of the spectra of the host and the companion. To help identify these lines we utilised several photometric redshift techniques including template fitting to the grism spectra, fitting the ultraviolet (UV)-to-radio photometry with galaxy templates plus a synchrotron model, fitting of the UV-to-near-infrared photometry with EAZY, and fitting the radio data alone with RAiSERed. For the host of GLEAM J0917–0012 we find a line at $1.12\,\mu$m and the UV-to-radio spectral energy distribution (SED) fitting favours solutions at $z\sim 2$ or $z\sim 8$. While this fitting shows a weak preference for the lower redshift solution, the models from the higher redshift solution are more consistent with the strength of the spectral line. The redshift constraint by RAiSERed of $>6.5$ also supports the interpretation that this line could be Lyman$-\alpha$ at $z=8.21$; however EAZY favours the $z\sim 2$ solution. We discuss the implications of both solutions. For the companion galaxy we find a line at $0.98\,\mu$m and the SED fitting favours solutions at $z<3$ implying that the line could be the [OII]$\lambda3727$ doublet at $z=1.63$ (although the EAZY solution is $z\sim 2.6\pm 0.5$). Further observations are still required to unambiguously determine the redshift of this intriguing candidate ultra-high-redshift radio galaxy.
We previously reported a putative detection of a radio galaxy at
$z=10.15$
, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The redshift of this source, GLEAM J0917–0012, was based on three weakly detected molecular emission lines observed with the Atacama Large Millimetre Array (ALMA). In order to confirm this result, we conducted deep spectroscopic follow-up observations with ALMA and the Karl Jansky Very Large Array (VLA). The ALMA observations targeted the same CO lines previously reported in Band 3 (84–115 GHz) and the VLA targeted the CO(4-3) and [CI(1-0)] lines for an independent confirmation in Q-band (41 and 44 GHz). Neither observation detected any emission lines, removing support for our original interpretation. Adding publicly available optical data from the Hyper Suprime-Cam survey, Widefield Infrared Survey Explorer (WISE), and Herschel Space Observatory in the infrared, as well as
$<$
10 GHz polarisation and 162 MHz inter-planetary scintillation observations, we model the physical and observational characteristics of GLEAM J0917–0012 as a function of redshift. Comparing these predictions and observational relations to the data, we are able to constrain its nature and distance. We argue that if GLEAM J0917–0012 is at
$z<3,$
then it has an extremely unusual nature, and that the more likely solution is that the source lies above
$z=7$
.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination
$<\!{+}30^{\circ}$
) with an angular resolution of
${\approx}2$
arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median
$z \approx 0.064$
) radio sources with
$S_{200\,\mathrm{MHz}} > 55$
mJy across an area of
${\approx}16\,700\,\mathrm{deg}^{2}$
. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and
${\sim}1$
GHz. For the AGN, the median spectral index between 200 MHz and
${\sim}1$
GHz,
$\alpha_{\mathrm{high}}$
, is
$-0.600 \pm 0.010$
(where
$S \propto \nu^{\alpha}$
) and the median spectral index within the GLEAM band,
$\alpha_{\mathrm{low}}$
, is
$-0.704 \pm 0.011$
. For the SF galaxies, the median value of
$\alpha_{\mathrm{high}}$
is
$-0.650 \pm 0.010$
and the median value of
$\alpha_{\mathrm{low}}$
is
$-0.596 \pm 0.015$
. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies (
$\alpha_{\mathrm{low}} < -1.2$
). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
There are significant drug–drug interactions between human immunodeficiency virus antiretroviral therapy and intranasal steroids, leading to high serum concentrations of iatrogenic steroids and subsequently Cushing's syndrome.
Method
All articles in the literature on cases of intranasal steroid and antiretroviral therapy interactions were reviewed. Full-length manuscripts were analysed and the relevant data were extracted.
Results
A literature search and further cross-referencing yielded a total of seven reports on drug–drug interactions of intranasal corticosteroids and human immunodeficiency virus protease inhibitors, published between 1999 and 2019.
Conclusion
The use of potent steroids metabolised via CYP3A4, such as fluticasone and budesonide, are not recommended for patients taking ritonavir or cobicistat. Mometasone should be used cautiously with ritonavir because of pharmacokinetic similarities to fluticasone. There was a delayed onset of symptoms in many cases, most likely due to the relatively lower systemic bioavailability of intranasal fluticasone.
We present the South Galactic Pole (SGP) data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. These data combine both years of GLEAM observations at 72–231 MHz conducted with the Murchison Widefield Array (MWA) and cover an area of 5 113$\mathrm{deg}^{2}$ centred on the SGP at $20^{\mathrm{h}} 40^{\mathrm{m}} < \mathrm{RA} < 05^{\mathrm{h}} 04^{\mathrm{m}}$ and $-48^{\circ} < \mathrm{Dec} < -2^{\circ} $. At 216 MHz, the typical rms noise is ${\approx}5$ mJy beam–1 and the angular resolution ${\approx}2$ arcmin. The source catalogue contains a total of 108 851 components above $5\sigma$, of which 77% have measured spectral indices between 72 and 231 MHz. Improvements to the data reduction in this release include the use of the GLEAM Extragalactic catalogue as a sky model to calibrate the data, a more efficient and automated algorithm to deconvolve the snapshot images, and a more accurate primary beam model to correct the flux scale. This data release enables more sensitive large-scale studies of extragalactic source populations as well as spectral variability studies on a one-year timescale.
The remnant phase of a radio galaxy begins when the jets launched from an active galactic nucleus are switched off. To study the fraction of radio galaxies in a remnant phase, we take advantage of a $8.31$ deg$^2$ subregion of the GAMA 23 field which comprises of surveys covering the frequency range 0.1–9 GHz. We present a sample of 104 radio galaxies compiled from observations conducted by the Murchison Widefield Array (216 MHz), the Australia Square Kilometer Array Pathfinder (887 MHz), and the Australia Telescope Compact Array (5.5 GHz). We adopt an ‘absent radio core’ criterion to identify 10 radio galaxies showing no evidence for an active nucleus. We classify these as new candidate remnant radio galaxies. Seven of these objects still display compact emitting regions within the lobes at 5.5 GHz; at this frequency the emission is short-lived, implying a recent jet switch off. On the other hand, only three show evidence of aged lobe plasma by the presence of an ultra-steep-spectrum ($\alpha<-1.2$) and a diffuse, low surface brightness radio morphology. The predominant fraction of young remnants is consistent with a rapid fading during the remnant phase. Within our sample of radio galaxies, our observations constrain the remnant fraction to $4\%\lesssim f_{\mathrm{rem}} \lesssim 10\%$; the lower limit comes from the limiting case in which all remnant candidates with hotspots are simply active radio galaxies with faint, undetected radio cores. Finally, we model the synchrotron spectrum arising from a hotspot to show they can persist for 5–10 Myr at 5.5 GHz after the jets switch of—radio emission arising from such hotspots can therefore be expected in an appreciable fraction of genuine remnants.
We present the results of a new selection technique to identify powerful ($L_{\rm 500\,MHz} \gt 10^{27}\,\text{WHz}^{-1}$) radio galaxies towards the end of the Epoch of Reionisation. Our method is based on the selection of bright radio sources showing radio spectral curvature at the lowest frequency (${\sim}100\,\text{MHz}$) combined with the traditional faintness in K-band for high-redshift galaxies. This technique is only possible, thanks to the Galactic and Extra-galactic All-sky Murchison Wide-field Array survey which provides us with 20 flux measurements across the 70–$230\,\text{MHz}$ range. For this pilot project, we focus on the GAMA 09 field to demonstrate our technique. We present the results of our follow-up campaign with the Very Large Telescope, Australian Telescope Compact Array, and the Atacama Large Millimetre Array to locate the host galaxy and to determine its redshift. Of our four candidate high-redshift sources, we find two powerful radio galaxies in the $1<z<3$ range, confirm one at $z=5.55$, and present a very tentative $z=10.15$ candidate. Their near-infrared and radio properties show that we are preferentially selecting some of the most radio luminous objects, hosted by massive galaxies very similar to powerful radio galaxies at $1<z<5$. Our new selection and follow-up technique for finding powerful radio galaxies at $z>5.5$ has a high 25–50% success rate.
The Murchison Widefield Array (MWA) has observed the entire southern sky (Declination,
$\delta< 30^{\circ}$
) at low radio frequencies, over the range 72–231MHz. These observations constitute the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we use the extragalactic catalogue (EGC) (Galactic latitude,
$|b| >10^{\circ}$
) to define the GLEAM 4-Jy (G4Jy) Sample. This is a complete sample of the ‘brightest’ radio sources (
$S_{\textrm{151\,MHz}}>4\,\text{Jy}$
), the majority of which are active galactic nuclei with powerful radio jets. Crucially, low-frequency observations allow the selection of such sources in an orientation-independent way (i.e. minimising the bias caused by Doppler boosting, inherent in high-frequency surveys). We then use higher-resolution radio images, and information at other wavelengths, to morphologically classify the brightest components in GLEAM. We also conduct cross-checks against the literature and perform internal matching, in order to improve sample completeness (which is estimated to be
$>95.5$
%). This results in a catalogue of 1863 sources, making the G4Jy Sample over 10 times larger than that of the revised Third Cambridge Catalogue of Radio Sources (3CRR;
$S_{\textrm{178\,MHz}}>10.9\,\text{Jy}$
). Of these G4Jy sources, 78 are resolved by the MWA (Phase-I) synthesised beam (
$\sim2$
arcmin at 200MHz), and we label 67% of the sample as ‘single’, 26% as ‘double’, 4% as ‘triple’, and 3% as having ‘complex’ morphology at
$\sim1\,\text{GHz}$
(45 arcsec resolution). We characterise the spectral behaviour of these objects in the radio and find that the median spectral index is
$\alpha=-0.740 \pm 0.012$
between 151 and 843MHz, and
$\alpha=-0.786 \pm 0.006$
between 151MHz and 1400MHz (assuming a power-law description,
$S_{\nu} \propto \nu^{\alpha}$
), compared to
$\alpha=-0.829 \pm 0.006$
within the GLEAM band. Alongside this, our value-added catalogue provides mid-infrared source associations (subject to 6” resolution at 3.4
$\mu$
m) for the radio emission, as identified through visual inspection and thorough checks against the literature. As such, the G4Jy Sample can be used as a reliable training set for cross-identification via machine-learning algorithms. We also estimate the angular size of the sources, based on their associated components at
$\sim1\,\text{GHz}$
, and perform a flux density comparison for 67 G4Jy sources that overlap with 3CRR. Analysis of multi-wavelength data, and spectral curvature between 72MHz and 20GHz, will be presented in subsequent papers, and details for accessing all G4Jy overlays are provided at https://github.com/svw26/G4Jy.
The entire southern sky (Declination,
$\delta< 30^{\circ}$
) has been observed using the Murchison Widefield Array (MWA), which provides radio imaging of
$\sim$
2 arcmin resolution at low frequencies (72–231 MHz). This is the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we have previously used a combination of visual inspection, cross-checks against the literature, and internal matching to identify the ‘brightest’ radio-sources (
$S_{\mathrm{151\,MHz}}>4$
Jy) in the extragalactic catalogue (Galactic latitude,
$|b| >10^{\circ}$
). We refer to these 1 863 sources as the GLEAM 4-Jy (G4Jy) Sample, and use radio images (of
${\leq}45$
arcsec resolution), and multi-wavelength information, to assess their morphology and identify the galaxy that is hosting the radio emission (where appropriate). Details of how to access all of the overlays used for this work are available at https://github.com/svw26/G4Jy. Alongside this we conduct further checks against the literature, which we document here for individual sources. Whilst the vast majority of the G4Jy Sample are active galactic nuclei with powerful radio-jets, we highlight that it also contains a nebula, two nearby, star-forming galaxies, a cluster relic, and a cluster halo. There are also three extended sources for which we are unable to infer the mechanism that gives rise to the low-frequency emission. In the G4Jy catalogue we provide mid-infrared identifications for 86% of the sources, and flag the remainder as: having an uncertain identification (129 sources), having a faint/uncharacterised mid-infrared host (126 sources), or it being inappropriate to specify a host (2 sources). For the subset of 129 sources, there is ambiguity concerning candidate host-galaxies, and this includes four sources (B0424–728, B0703–451, 3C 198, and 3C 403.1) where we question the existing identification.