We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accumulating evidence shows that an increasing number of children and young people (CYP) are reporting mental health problems.
Aims
To investigate emotional disorders (anxiety or depression) among CYP in England between 2004 and 2017, and to identify which disorders and demographic groups have experienced the greatest increase.
Method
Repeated cross-sectional, face-to-face study using data from the Mental Health of Children and Young People surveys conducted in 2004 and 2017, allowing use of nationally representative probability samples of CYP aged 5–16 years in England. A total of 13 561 CYP were included across both survey waves (6898 in 2004 and 6663 in 2017). We assessed the prevalence of any emotional, anxiety and depressive disorder assessed using the Development and Well-Being Assessment and classified according to ICD-10 criteria.
Results
The prevalence of emotional disorders increased from 3.9% in 2004 to 6.0% in 2017, a relative increase of 63% (relative ratio 1.63, 95% CI 1.38, 1.91). This was largely driven by anxiety disorders, which increased from 3.5 to 5.4% (relative ratio 1.63, 95% CI 1.37, 1.93). The largest relative changes were for panic disorder, separation anxiety, social phobia and post-traumatic stress disorder. Changes were similar for different genders and socioeconomic groups, but differed by ethnicity: the most pronounced increase was among White CYP (relative ratio 1.88, 95% CI 1.59, 2.24), compared with no clear change for Black and minority ethnic CYP (relative ratio 0.85, 95% CI 0.52, 1.39). Comorbid psychiatric conditions were present in over a third of CYP with emotional disorders, with the most common being conduct disorder.
Conclusions
Between 2004 and 2017, the increase in emotional disorders among CYP in England was largely driven by anxiety disorders. Socioeconomic inequalities did not narrow. Disaggregating by ethnicity, change was evident only in White CYP, suggesting differential trends in either risk exposure, resilience or reporting by ethnicity.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
We provide an assessment of the Infinity Two fusion pilot plant (FPP) baseline plasma physics design. Infinity Two is a four-field period, aspect ratio $A = 10$, quasi-isodynamic stellarator with improved confinement appealing to a max-$J$ approach, elevated plasma density and high magnetic fields ($ \langle B\rangle = 9$ T). Here $J$ denotes the second adiabatic invariant. At the envisioned operating point ($800$ MW deuterium-tritium (DT) fusion), the configuration has robust magnetic surfaces based on magnetohydrodynamic (MHD) equilibrium calculations and is stable to both local and global MHD instabilities. The configuration has excellent confinement properties with small neoclassical transport and low bootstrap current ($|I_{bootstrap}| \sim 2$ kA). Calculations of collisional alpha-particle confinement in a DT FPP scenario show small energy losses to the first wall (${\lt}1.5 \,\%$) and stable energetic particle/Alfvén eigenmodes at high ion density. Low turbulent transport is produced using a combination of density profile control consistent with pellet fueling and reduced stiffness to turbulent transport via three-dimensional shaping. Transport simulations with the T3D-GX-SFINCS code suite with self-consistent turbulent and neoclassical transport predict that the DT fusion power$P_{{fus}}=800$ MW operating point is attainable with high fusion gain ($Q=40$) at volume-averaged electron densities $n_e\approx 2 \times 10^{20}$ m$^{-3}$, below the Sudo density limit. Additional transport calculations show that an ignited ($Q=\infty$) solution is available at slightly higher density ($2.2 \times 10^{20}$ m$^{-3}$) with $P_{{fus}}=1.5$ GW. The magnetic configuration is defined by a magnetic coil set with sufficient room for an island divertor, shielding and blanket solutions with tritium breeding ratios (TBR) above unity. An optimistic estimate for the gas-cooled solid breeder designed helium-cooled pebble bed is TBR $\sim 1.3$. Infinity Two satisfies the physics requirements of a stellarator fusion pilot plant.
The magnetohydrodynamic (MHD) equilibrium and stability properties of the Infinity Two fusion pilot plant baseline plasma physics design are presented. The configuration is a four-field period, aspect ratio $A = 10$ quasi-isodynamic stellarator optimised for excellent confinement at elevated density and high magnetic field $B = 9\,T$. Magnetic surfaces exist in the plasma core in vacuum and retain good equilibrium surface integrity from vacuum to an operational $\beta = 1.6 \,\%$, the ratio of the volume average of the plasma and magnetic pressures, corresponding to $800\ \textrm{MW}$ deuterium–tritium fusion operation. Neoclassical calculations show that a self-consistent bootstrap current of the order of ${\sim} 1\ \textrm{kA}$ slightly increases the rotational transform profile by less than 0.001. The configuration has a magnetic well across its entire radius. From vacuum to the operating point, the configuration exhibits good ballooning stability characteristics, exhibits good Mercier stability across most of its minor radius and it is stable against global low-n MHD instabilities up to $\beta = 3.2\,\%$.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
From early on, infants show a preference for infant-directed speech (IDS) over adult-directed speech (ADS), and exposure to IDS has been correlated with language outcome measures such as vocabulary. The present multi-laboratory study explores this issue by investigating whether there is a link between early preference for IDS and later vocabulary size. Infants’ preference for IDS was tested as part of the ManyBabies 1 project, and follow-up CDI data were collected from a subsample of this dataset at 18 and 24 months. A total of 341 (18 months) and 327 (24 months) infants were tested across 21 laboratories. In neither preregistered analyses with North American and UK English, nor exploratory analyses with a larger sample did we find evidence for a relation between IDS preference and later vocabulary. We discuss implications of this finding in light of recent work suggesting that IDS preference measured in the laboratory has low test-retest reliability.
Australian Aboriginal and Torres Strait Islander peoples are disproportionately affected by diet-related disease such as type 2 diabetes, the rate of which is 20 fold higher than that of non-Indigenous young Australians(1). Before colonisation, Gomeroi and other First Nations people harvested, threshed and ground native grass seeds with water into a paste before cooking(2). The introduction of white refined flour has meant that time-consuming grass seed processing has mainly ceased, and native grains are no longer eaten habitually. The aim of this study was to determine the effect of 10% incorporation of two native grain flours on postprandial blood glucose response and Glycemic Index (GI). Five male and five female subjects, with a mean age of 30 ± 0.9 and BMI of 21.6 ± 0.4 and normoglycemic, participated in GI testing of three flour + water pancake compositions matched for available carbohydrate: 100% wheat (Wheat) and 90% wheat:10% native grains (Native_a and Native_b). Effect on satiety was determined using subjective ratings of hunger/fullness over the time course of the GI testing. In comparison to the plain flour pancake, replacing 10% plain wheat flour with Native_b flour significantly reduced the GI by 28.8% from 73 ± 5 to 48 ± 5, having a profound effect on postprandial blood glucose levels in 9 of 10 subjects (p<0.05, paired t-test). The GI of 10% Native_a flour pancake was not different from 100% wheat flour pancake (75 ± 5). Satiety tended to be greater when native grains were incorporated but this study was not powered to detect effect on satiety. In conclusion, replacing only 10% of plain wheat flour with Native_b flour was sufficient to significantly reduce the blood glycemic response to the pancake. This replacement could be easily implemented for prevention and treatment of type 2 diabetes. For Aboriginal people with access to grain Country, the nutritional health benefits associated with eating native grains, as well as the cultural benefits of caring for Country, will have a direct transformational impact on local communities. Our vision is to revitalise Gomeroi grains and to guide a sustainable Indigenous-led industry to heal Country and people through co-designed research.
High-quality evidence is lacking for the impact on healthcare utilisation of short-stay alternatives to psychiatric inpatient services for people experiencing acute and/or complex mental health crises (known in England as psychiatric decision units [PDUs]). We assessed the extent to which changes in psychiatric hospital and emergency department (ED) activity were explained by implementation of PDUs in England using a quasi-experimental approach.
Methods
We conducted an interrupted time series (ITS) analysis of weekly aggregated data pre- and post-PDU implementation in one rural and two urban sites using segmented regression, adjusting for temporal and seasonal trends. Primary outcomes were changes in the number of voluntary inpatient admissions to (acute) adult psychiatric wards and number of ED adult mental health-related attendances in the 24 months post-PDU implementation compared to that in the 24 months pre-PDU implementation.
Results
The two PDUs (one urban and one rural) with longer (average) stays and high staff-to-patient ratios observed post-PDU decreases in the pattern of weekly voluntary psychiatric admissions relative to pre-PDU trend (Rural: −0.45%/week, 95% confidence interval [CI] = −0.78%, −0.12%; Urban: −0.49%/week, 95% CI = −0.73%, −0.25%); PDU implementation in each was associated with an estimated 35–38% reduction in total voluntary admissions in the post-PDU period. The (urban) PDU with the highest throughput, lowest staff-to-patient ratio and shortest average stay observed a 20% (−20.4%, CI = −29.7%, −10.0%) level reduction in mental health-related ED attendances post-PDU, although there was little impact on long-term trend. Pooled analyses across sites indicated a significant reduction in the number of voluntary admissions following PDU implementation (−16.6%, 95% CI = −23.9%, −8.5%) but no significant (long-term) trend change (−0.20%/week, 95% CI = −0.74%, 0.34%) and no short- (−2.8%, 95% CI = −19.3%, 17.0%) or long-term (0.08%/week, 95% CI = −0.13, 0.28%) effects on mental health-related ED attendances. Findings were largely unchanged in secondary (ITS) analyses that considered the introduction of other service initiatives in the study period.
Conclusions
The introduction of PDUs was associated with an immediate reduction of voluntary psychiatric inpatient admissions. The extent to which PDUs change long-term trends of voluntary psychiatric admissions or impact on psychiatric presentations at ED may be linked to their configuration. PDUs with a large capacity, short length of stay and low staff-to-patient ratio can positively impact ED mental health presentations, while PDUs with longer length of stay and higher staff-to-patient ratios have potential to reduce voluntary psychiatric admissions over an extended period. Taken as a whole, our analyses suggest that when establishing a PDU, consideration of the primary crisis-care need that underlies the creation of the unit is key.
Metric analysis of skeletal material is integral to the analysis and identification of human remains, though one commonly used measuring device, the osteometric board, has lagged in recent advancement. Traditional boards are bulky and require manual measurement recording, potentially generating intra- and interobserver error. To address these limitations, we tested the reliability, validity, and error rates of a novel device, the Portable Osteometric Device Version 1 (PODv1), which measures distance using laser sensors with time-of-flight technology. Forty-five volunteers measured four skeletal elements with the PODv1 and a PaleoTech osteometric board in three rounds. Comparison of tibia, humerus, and femur measurements with both devices showed no significant differences, although the maximum length of the ulna did differ, potentially because of observer confusion regarding the PODv1's user instructions for this element. Our results suggest that the PODv1 is a reliable, valid measurement device compared to traditional osteometric boards. Although both device types can produce calibration, transcription, and observer errors, the time-of-flight technology and the absence of manual recording built into the PODv1 may limit those errors. These advancements and their potential positive impacts on the accuracy of osteometric data collection may have far-reaching benefits for osteological, bioarchaeological, paleopathological, and forensic anthropological data collection.
This paper explores the feasibility of a break-even-class mirror referred to as BEAM (break-even axisymmetric mirror): a neutral-beam-heated simple mirror capable of thermonuclear-grade parameters and $Q\sim 1$ conditions. Compared with earlier mirror experiments in the 1980s, BEAM would have: higher-energy neutral beams, a larger and denser plasma at higher magnetic field, both an edge and a core and capabilities to address both magnetohydrodynamic and kinetic stability of the simple mirror in higher-temperature plasmas. Axisymmetry and high-field magnets make this possible at a modest scale enabling a short development time and lower capital cost. Such a $Q\sim 1$ configuration will be useful as a fusion technology development platform, in which tritium handling, materials and blankets can be tested in a real fusion environment, and as a base for development of higher-$Q$ mirrors.
To examine associations between executive function (EF) domains (attentional control, information processing, cognitive flexibility, and goal setting) and math computation performance at 7 and 13 years in children born very preterm (VP; <30 weeks' gestation), and secondly, to investigate the associations of 7-year EF with change in math performance from 7 to 13 years.
Participants and Methods:
In the prospective, longitudinal Victorian Infant Brain Studies (VIBeS) cohort of children born VP, assessment of EF and math performance was undertaken at 7 (n = 187) and 13 years (n = 174). Univariable and multivariable regression models (including all domains of EF) were used to examine associations between EF domains at both timepoints with math performance, as well as associations between EF at 7 years with change in math from 7 to 13 years.
Results:
At 7 and 13 years, all EF domains were positively associated with concurrent math performance, with multivariable models finding information processing, cognitive flexibility and goal setting independently contributed to math performance at both ages. All EF domains were positively associated with improvement in math performance from 7 to 13 years, with multivariable models finding that goal setting contributed unique variance to improvement in math over this period.
Conclusions:
This study provides evidence for a strong, consistent association between EF and math performance in children born VP and emphasizes the importance of goal setting capacity for later improvement in math performance.
The COVID-19 pandemic accelerated the development of decentralized clinical trials (DCT). DCT’s are an important and pragmatic method for assessing health outcomes yet comprise only a minority of clinical trials, and few published methodologies exist. In this report, we detail the operational components of COVID-OUT, a decentralized, multicenter, quadruple-blinded, randomized trial that rapidly delivered study drugs nation-wide. The trial examined three medications (metformin, ivermectin, and fluvoxamine) as outpatient treatment of SARS-CoV-2 for their effectiveness in preventing severe or long COVID-19. Decentralized strategies included HIPAA-compliant electronic screening and consenting, prepacking investigational product to accelerate delivery after randomization, and remotely confirming participant-reported outcomes. Of the 1417 individuals with the intention-to-treat sample, the remote nature of the study caused an additional 94 participants to not take any doses of study drug. Therefore, 1323 participants were in the modified intention-to-treat sample, which was the a priori primary study sample. Only 1.4% of participants were lost to follow-up. Decentralized strategies facilitated the successful completion of the COVID-OUT trial without any in-person contact by expediting intervention delivery, expanding trial access geographically, limiting contagion exposure, and making it easy for participants to complete follow-up visits. Remotely completed consent and follow-up facilitated enrollment.
We present and evaluate the prospects for detecting coherent radio counterparts to gravitational wave (GW) events using Murchison Widefield Array (MWA) triggered observations. The MWA rapid-response system, combined with its buffering mode ($\sim$4 min negative latency), enables us to catch any radio signals produced from seconds prior to hours after a binary neutron star (BNS) merger. The large field of view of the MWA ($\sim$$1\,000\,\textrm{deg}^2$ at 120 MHz) and its location under the high sensitivity sky region of the LIGO-Virgo-KAGRA (LVK) detector network, forecast a high chance of being on-target for a GW event. We consider three observing configurations for the MWA to follow up GW BNS merger events, including a single dipole per tile, the full array, and four sub-arrays. We then perform a population synthesis of BNS systems to predict the radio detectable fraction of GW events using these configurations. We find that the configuration with four sub-arrays is the best compromise between sky coverage and sensitivity as it is capable of placing meaningful constraints on the radio emission from 12.6% of GW BNS detections. Based on the timescales of four BNS merger coherent radio emission models, we propose an observing strategy that involves triggering the buffering mode to target coherent signals emitted prior to, during or shortly following the merger, which is then followed by continued recording for up to three hours to target later time post-merger emission. We expect MWA to trigger on $\sim$$5-22$ BNS merger events during the LVK O4 observing run, which could potentially result in two detections of predicted coherent emission.
Since the initial publication of A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals in 2008, the prevention of healthcare-associated infections (HAIs) has continued to be a national priority. Progress in healthcare epidemiology, infection prevention, antimicrobial stewardship, and implementation science research has led to improvements in our understanding of effective strategies for HAI prevention. Despite these advances, HAIs continue to affect ∼1 of every 31 hospitalized patients,1 leading to substantial morbidity, mortality, and excess healthcare expenditures,1 and persistent gaps remain between what is recommended and what is practiced.
The widespread impact of the coronavirus disease 2019 (COVID-19) pandemic on HAI outcomes2 in acute-care hospitals has further highlighted the essential role of infection prevention programs and the critical importance of prioritizing efforts that can be sustained even in the face of resource requirements from COVID-19 and future infectious diseases crises.3
The Compendium: 2022 Updates document provides acute-care hospitals with up-to-date, practical expert guidance to assist in prioritizing and implementing HAI prevention efforts. It is the product of a highly collaborative effort led by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Disease Society of America (IDSA), the Association for Professionals in Infection Control and Epidemiology (APIC), the American Hospital Association (AHA), and The Joint Commission, with major contributions from representatives of organizations and societies with content expertise, including the Centers for Disease Control and Prevention (CDC), the Pediatric Infectious Disease Society (PIDS), the Society for Critical Care Medicine (SCCM), the Society for Hospital Medicine (SHM), the Surgical Infection Society (SIS), and others.
The Wisconsin high-temperature superconductor axisymmetric mirror experiment (WHAM) will be a high-field platform for prototyping technologies, validating interchange stabilization techniques and benchmarking numerical code performance, enabling the next step up to reactor parameters. A detailed overview of the experimental apparatus and its various subsystems is presented. WHAM will use electron cyclotron heating to ionize and build a dense target plasma for neutral beam injection of fast ions, stabilized by edge-biased sheared flow. At 25 keV injection energies, charge exchange dominates over impact ionization and limits the effectiveness of neutral beam injection fuelling. This paper outlines an iterative technique for self-consistently predicting the neutral beam driven anisotropic ion distribution and its role in the finite beta equilibrium. Beginning with recent work by Egedal et al. (Nucl. Fusion, vol. 62, no. 12, 2022, p. 126053) on the WHAM geometry, we detail how the FIDASIM code is used to model the charge exchange sources and sinks in the distribution function, and both are combined with an anisotropic magnetohydrodynamic equilibrium solver method to self-consistently reach an equilibrium. We compare this with recent results using the CQL3D code adapted for the mirror geometry, which includes the high-harmonic fast wave heating of fast ions.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.