We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A set of 68 simple sequence repeat (SSR) markers were selected from existing databases (including Medicago, soybean, cowpea and peanut) for the purpose of exploiting the transferability of SSRs across species and/or genera within the legume family. Primers were tested for cross-species and cross-genus fragment amplification with an array of 24 different legume accessions. Nearly one-third (30.78%) of the SSR primers screened generated reproducible and cross-genus amplicons. One hundred and seventeen cross-species polymorphic amplicons were identified and could be used as DNA markers. These polymorphic markers are now being used for characterization and evaluation of our collected and donated legume germ- plasm. The transferability of SSRs, mis-/multiple-primings, homologous/heterologous amplifications, single/multiple-amplicons and application of these amplicons as DNA markers are discussed. The transfer of SSR markers across species or across genera can be a very efficient approach for DNA marker development, especially for minor crops.
The mechanism through which developmental programming of offspring overweight/obesity following in utero exposure to maternal overweight/obesity operates is unknown but may operate through biologic pathways involving offspring anthropometry at birth. Thus, we sought to examine to what extent the association between in utero exposure to maternal overweight/obesity and childhood overweight/obesity is mediated by birth anthropometry. Analyses were conducted on a retrospective cohort with data obtained from one hospital system. A natural effects model framework was used to estimate the natural direct effect and natural indirect effect of birth anthropometry (weight, length, head circumference, ponderal index, and small-for-gestational age [SGA] or large-for-gestational age [LGA]) for the association between pre-pregnancy maternal body mass index (BMI) category (overweight/obese vs normal weight) and offspring overweight/obesity in childhood. Models were adjusted for maternal and child socio-demographics. Three thousand nine hundred and fifty mother–child dyads were included in analyses (1467 [57.8%] of mothers and 913 [34.4%] of children were overweight/obese). Results suggest that a small percentage of the effect of maternal pre-pregnancy BMI overweight/obesity on offspring overweight/obesity operated through offspring anthropometry at birth (weight: 15.5%, length: 5.2%, head circumference: 8.5%, ponderal index: 2.2%, SGA: 2.9%, and LGA: 4.2%). There was a small increase in the percentage mediated when gestational diabetes or hypertensive disorders were added to the models. Our study suggests that some measures of birth anthropometry mediate the association between maternal pre-pregnancy overweight/obesity and offspring overweight/obesity in childhood and that the size of this mediated effect is small.
To characterize the association of longitudinal changes in maternal anthropometric measures with neonatal anthropometry and to assess to what extent late-gestational changes in maternal anthropometry are associated with neonatal body composition.
Design
In a prospective cohort of pregnant women, maternal anthropometry was measured at six study visits across pregnancy and after birth, neonates were measured and fat and lean mass calculated. We estimated maternal anthropometric trajectories and separately assessed rate of change in the second (15–28 weeks) and third trimester (28–39 weeks) in relation to neonatal anthropometry. We investigated the extent to which tertiles of third-trimester maternal anthropometry change were associated with neonatal outcomes.
Setting
Women were recruited from twelve US sites (2009–2013).
Participants
Non-obese women with singleton pregnancies (n 2334).
Results
A higher rate of increase in gestational weight gain was associated with larger-birth-weight infants with greater lean and fat mass. In contrast, higher rates of increase in maternal anthropometry measures were not associated with infant birth weight but were associated with decreased neonatal lean mass. In the third trimester, women in the tertile of lowest change in triceps skinfold (−0·57 to −0·06 mm per week) had neonates with 35·8 g more lean mass than neonates of mothers in the middle tertile of rate of change (−0·05 to 0·06 mm per week).
Conclusions
The rate of change in third-trimester maternal anthropometry measures may be related to neonatal lean and fat mass yet have a negligible impact on infant birth weight, indicating that neonatal anthropometry may provide additional information over birth weight alone.
Trapped waves can exist in the presence of bodies in open water, and also in channels of finite width. Various examples are found for bodies that support trapped waves in channels, including floating and submerged bodies and bottom-mounted cylinders. Different types of trapping are considered where the body is fixed or free to move in response to the oscillatory pressure. In some cases both types are supported by the same body. In most cases for fixed bodies the fluid motion is antisymmetric about the centreline of the channel, but special body shapes exist where the trapped mode is asymmetric. For free bodies the trapping modes and body motions are symmetric about the centreline if the body is floating or antisymmetric if it is submerged.
Lectotypes are designated for eight names in Eriocaulon in tropical Asia, namely E. alatum, E. hamiltonianum, E. hookerianum, E. infirmum, E. lanigerum, E. nautiliforme, E. nigrum and E. ubonense. Additional information on the lectotype of Eriocaulon quinquangulare is given.
Compounding offers a way of advancing the performance of the standard helicopter significantly for a moderate increase in complexity through the addition of wings and/or auxiliary propulsion. The compound helicopter configuration has the potential advantages of increased speed, range, agility, productivity and reduced vibration levels over conventional helicopters. Despite several significant efforts, however, no compound helicopter has ever been put into production. This paper looks at three aircraft that came close to being accepted by operators and examines the reasons why they were not ultimately put into production. The cancellation of these projects appeared to be of a political nature rather than technical. Also addressed are the issues that still face prospective designers of compound helicopters and the lessons that can be extracted and applied to modern day efforts to build and sell an aircraft of this configuration.
The interaction of a helicopter tail rotor blade with the tip vortex system from the main rotor is a significant source of noise and, in some flight states, can produce marked reductions in control effectiveness. This paper describes a series of wind-tunnel tests to simulate tail rotor blade vortex interaction with a view to providing data for the development and validation of numerical simulations of the phenomenon. In the experiments, which were carried out in the Argyll wind-tunnel of Glasgow University, a single-bladed rotor located in the tunnel’s contraction was used to generate the tip vortex which travelled downstream into the working section where it interacted with a model tail rotor. The tail rotor was instrumented with miniature pressure transducers that measured the aerodynamic response during the interaction. The results suggest that the rotor blade vortex interaction is similar in form to that measured at much higher spatial resolution on a fixed, non-rotating blade. The combination of the two datasets, therefore, provides a valuable resource for the development and validation of predictive schemes.
A study of the course of 17 patients with subacute polyneuritis was undertaken. Ten were given corticosteroids. Assessment of time of turnaround, that is the beginning of clinical improvement, showed that some patients responded promptly to steroids whereas a few did not. A comparison of turnaround times between the treated and untreated cases shows a statistically significant effect of steroids in hastening the onset of recovery. This is not due to bias in selection of those for steroid treatment.
We wanted to present our experience with the extended endoscopic approach to clival pathology, focusing on cerebrospinal fluid leak and reconstruction challenges.
Methods:
We examined a consecutive series of 37 patients undergoing the extended endoscopic approach for skull base tumours, 9 patients with clival pathology. Patients were examined for the incidence of post-operative cerebrospinal fluid leak in relation to tumour pathology, location, size, reconstruction and lumbar drain.
Results:
The overall incidence of post-operative cerebrospinal fluid leak was 10.8 per cent. Seventy-five per cent of patients who had a post-operative cerebrospinal fluid leak underwent a transclival approach (p < 0.05). All patients with clival pathology who underwent an intradural dissection had a post-operative cerebrospinal fluid leak (p < 0.05).
Conclusion:
Post-operative cerebrospinal fluid leak rates after the extended endoscopic approach have improved significantly after advancements including the vascularised nasoseptal flap. Despite this, transclival approaches continue to pose much difficulty. Further investigation is necessary to develop technical improvements that can meet the unique challenges associated with this region.
The paper describes a process which allows a vertical circular cylinder subject to plane monochromatic surface gravity waves to appear invisible to the far-field observer. This is achieved by surrounding the cylinder with an annular region of variable bathymetry. Two approaches are taken to investigate this effect. First a mild-slope approximation is applied to the governing linearised three-dimensional water wave equations to formulate a depth-averaged two-dimensional wave equation with varying wavenumber over the variable bathmetry. This is then solved by formulating a domain integral equation, solved numerically by discretisation. For a given set of geometrical and wave parameters, the bathymetry is selected by a numerical optimisation process and it is shown that the scattering cross-section is reduced towards zero with increasing refinement of the bathymetry. A fully three-dimensional boundary-element method, based on the WAMIT solver (see www.wamit.com) but adapted here to allow for depressions in the bed, is used to assess the accuracy of the mild-slope results and then further numerically optimise the bathymetry towards a cloaking structure. Numerical results provide strong evidence that perfect cloaking is possible for the fully three-dimensional problem. One practical application of the results is that cloaking implies a reduced mean drift force on the cylinder.
We have used high-resolution, HST WFC3/IR, near-infrared imaging to conduct a detailed bulge-disk decomposition of the morphologies of ≃ 200 of the most massive (M* > 1011 M⊙) galaxies at 1 < z < 3 in the CANDELS-UDS field. We find that, while such massive galaxies at low redshift are generally bulge-dominated, at redshifts 1<z<2 they are predominantly mixed bulge+disk systems, and by z > 2 they are mostly disk-dominated. Interestingly, we find that while most of the quiescent galaxies are bulge-dominated, a significant fraction (25–40%) of the most quiescent galaxies, have disk-dominated morphologies. Thus, our results suggest that the physical mechanisms which quench star-formation activity are not simply connected to those responsible for the morphological transformation of massive galaxies.
The Duke Twins Study of Memory in Aging is an ongoing, longitudinal study of cognitive change and dementia in the population-based National Academy of Sciences-National Research Council (NAS-NRC) Twin Registry of World War II Male Veterans. The primary goal of this study has been to estimate the overall genetic and environmental contributions to dementia with a specific focus on Alzheimer's disease. An additional goal has been to examine specific genetic and environmental antecedents of cognitive decline and dementia. Since 1989, we have completed 4 waves of data collection. Each wave included a 2-phase telephone cognitive screening protocol, followed by an in-home standardized clinical assessment for those with suspected dementia. For many participants, we have obtained postmortem neuro-pathological confirmation of the diagnosis of dementia. In addition to data on cognition, we have also collected information on occupational history, medical history, medications and other lifetime experiences that may influence cognitive function in late life. We provide an overview of the study's methodology and describe the focus of recent research.
The hydrodynamic pressure forces acting upon a slender fish are derived for the case of a fish swimming in a non-uniform velocity field. Possible applications are the effects on fish propulsion of swimming in waves, in turbulent eddies, and in the presence of other fish or a moving ship. The fish is assumed to be a slender body, with no vorticity shed into the fluid except at a single abrupt trailing edge located at the posterior end of the fish, and to be performing small lateral swimming undulations of its body. The non-uniform field through which the fish swims is assumed to be irrotational, and this field as well as the body undulations must be slowly-varying on the length-scale of the lateral fish dimensions. Expressions are derived for the local force and the time-averaged total thrust force. These are applied to the study of steady-state bow-riding and wave-riding of porpoises.
In-situ and ex-situ measurements of environmental radioactivity were made on the iThemba LABS (iTL) grounds in South Africa. The MEDUSA and HPGe detector systems were used to make in-situ and ex-situ measurements, respectively. The MEDUSA was mounted ~0.5 m above the ground on a 4 × 4 vehicle to traverse [at ~2m∙s-1] the accessible portions of the iTL grounds. Spatial data (via a GPS receiver) were acquired every 1 s, and γ-ray spectra every 2 s. MEDUSA count rate maps were produced to show the spatial distribution of radioactivity on the grounds. The HPGe was used to measure the radioactivity in soil (and also in some grass) samples collected at particular spots on the iTL grounds. The sampled spots include six identified high activity spots (“hot spots”) and two “calibration spots”. The activity concentrations were determined for both the natural and anthropogenic radionuclides. The absorbed and effective doses (from external γ-ray irradiation) were also determined for the natural and anthropogenic radionuclides. The maximum effective dose to humans on the iTL grounds as a result of external exposure to natural and anthropogenic radionuclides was found to be well below the regulatory 1 mSv per year per member of public.
An approximation of the second-order diffraction potential is derived, for water waves of small amplitude incident upon a fixed body in a fluid of large depth. Attention is focused on the second-harmonic component of this potential, in terms of the fundamental incident-wave frequency, and on the particular solution of the inhomogeneous free-surface boundary condition with quadratic forcing by the first-order solution. By considering only the far-field approximation of the forcing function, a simple solution is derived in the near field of the body which is dominant when the submergence of the field point is large. The validity of this approach is confirmed by comparisons with two-dimensional experiments and three-dimensional computations.
The diffraction of water waves by a vertical circular cylinder is considered in the regime where the wave amplitude A and cylinder radius a are of the same order, and both are small compared to the wavelength. The wave slope is small, and a conventional linear analysis applies in the outer domain far from the cylinder. Significant nonlinear effects exist in the complementary inner domain close to the cylinder, associated with the free-surface boundary condition. Using inner coordinates scaled with respect to a, it is shown that the leading-order nonlinear contribution to the velocity potential includes terms proportional to both A2a and A3. The wave load which acts on the cylinder near the free surface includes second- and third-harmonic components which are proportional respectively to A2a2 and A3a. In a conventional perturbation analysis, where A [Lt] a, these components would be ordered in magnitude corresponding to the different powers of A, but here they are of the same order. The second- and third-order components of the total force are of comparable magnitude for practical values of the wave slope.
Wave-drift damping results from low-frequency, oscillatory- motions of a floating body, in the presence of an incident wave field. Previous works have analysed this effect in a quasi-steady manner, based on the rate of change of the added resistance in waves, with respect to a small steady forward velocity. In this paper the wave-drift damping coefficient is derived more directly, from a perturbation analysis where the low-frequency body oscillations are superposed on the diffraction field. Unlike the case of body oscillations in calm water, where the damping due to wave radiation is asymptotically small for low frequencies, the superposition of oscillatory motions on the diffraction field results in an order-one damping coefficient. All three degrees of freedom are considered in the horizontal plane. The resulting matrix of damping coefficients is derived from pressure integration on the body, and transformed in special cases to a far-field control surface.
The second-order wave force is analysed for diffraction of monochromatic water waves by a vertical cylinder. The force is evaluated directly from pressure integration over the cylinder, and the second-order potential is derived by Weber transformation of the corresponding forcing function on the free surface. This forcing function is reduced to a form which involves a simple factor inversely proportional to the radial coordinate plus an oscillatory function which decays more rapidly in the far field. This feature alleviates the slow rate of convergence involved in capturing the far-field effect. Benchmark computations are obtained and compared with other works. Asymptotic approximations are derived for long and short wavelengths. The analysis and results are primarily for the case of infinite fluid depth, but the finite-depth case is also considered to facilitate comparison with other computations and to illustrate the importance of finite-depth effects in the long-wavelength asymptotic regime.