We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Current liver-stage Plasmodium falciparum models are complex, expensive and largely inaccessible, hindering research progress. Here, we show that a 3D liver spheroid model grown from immortalized HepG2/C3A cells supports the complete intrahepatocytic lifecycle of P. falciparum. Our results demonstrate sporozoite infection, development of exoerythrocytic forms and breakthrough infection into erythrocytes. The 3D-grown spheroid hepatocytes are structurally and functionally polarized, displaying enhanced albumin and urea production and increased expression of key metabolic enzymes, mimicking in vivo conditions – relative to 2D cultures. This accessible, reproducible model lowers barriers to malaria research, promoting advancements in fundamental biology and translational research.
To sustain its agricultural output, the U.S. relies heavily on imports of potash. Using two different methodologies, this study finds that U.S. import demand falls by approximately four percent in the short run and nine percent in the long run for a 10% rise in the potash import price. Price transmission with leading exporter Canada is imperfect, with U.S. prices rising only 7.7% in the short run when Canadian prices rise by 10%. The findings suggest that policies such as import tariffs would raise costs for U.S. agricultural producers because there are few potash substitutes.
Employment and relationship are crucial for social integration. However, individuals with major psychiatric disorders often face challenges in these domains.
Aims
We investigated employment and relationship status changes among patients across the affective and psychotic spectrum – in comparison with healthy controls, examining whether diagnostic groups or functional levels influence these transitions.
Method
The sample from the longitudinal multicentric PsyCourse Study comprised 1260 patients with affective and psychotic spectrum disorders and 441 controls (mean age ± s.d., 39.91 ± 12.65 years; 48.9% female). Multistate models (Markov) were used to analyse transitions in employment and relationship status, focusing on transition intensities. Analyses contained multiple multistate models adjusted for age, gender, job or partner, diagnostic group and Global Assessment of Functioning (GAF) in different combinations to analyse the impact of the covariates on the hazard ratio of changing employment or relationship status.
Results
The clinical group had a higher hazard ratio of losing partner (hazard ratio 1.46, P < 0.001) and job (hazard ratio 4.18, P < 0.001) than the control group (corrected for age/gender). Compared with controls, clinical groups had a higher hazard of losing partner (affective group, hazard ratio 2.69, P = 0.003; psychotic group, hazard ratio 3.06, P = 0.001) and job (affective group, hazard ratio 3.43, P < 0.001; psychotic group, hazard ratio 4.11, P < 0.001). Adjusting for GAF, the hazard ratio of losing partner and job decreased in both clinical groups compared with controls.
Conclusion
Patients face an increased hazard of job loss and relationship dissolution compared with healthy controls, and this is partially conditioned by the diagnosis and functional level. These findings underscore a high demand for destigmatisation and support for individuals in managing their functional limitations.
This paper presents a detailed chronological study of the previously undisturbed burial ground of Choburak-I of the Bulan-Koby Culture in the Northern Altai using a program of comprehensive dating, including AMS 14C dating of human and animal remains (26 14C dates from 12 kurgans in total), and archaeological dating of the associated artifacts. This completely excavated cemetery contained numerous grave goods and various organic remains (anthropological and archaeozoological) critical for understanding the social and chronological dynamics of this culture during the Rouran period in Altai (second half of the 4th–first half of the 6th century CE). The results of archaeological dating, supported by the largest set of AMS 14C dates for the Bulan-Koby Culture, and further aided by Bayesian analysis, demonstrate the likely continuous existence of the necropolis within the period of 310–400 cal CE, which broadly corresponds to the beginning of the Rouran period in the history of Altai, with a maximum duration of 66 years. The presented results make it possible to consider the necropolis of Choburak-I as a chronologically defining monument of the Rouran period of Northern Altai and permit a new level of relative and absolute chronological reconstructions for archaeological sites of this region and adjacent territories at the turn of late antiquity and the early Middle Ages.
One century after its initial excavation, this article presents the first absolute chronology for the settlement of Karanis in Egypt. Radiocarbon dates from crops retrieved from settlement structures suggest that the site was inhabited beyond the middle of the fifth century AD, the time at which it was previously believed to have been abandoned. These dates add to the complex picture of population fluctuations and the remodelling and reuse of structures at Karanis. Two dates reach into the middle of the seventh century, placing the abandonment of the site in a period of political and environmental transition that changed the physical and social landscape of the Fayum region and beyond.
Observations of radiocarbon (14C) in Earth’s atmosphere and other carbon reservoirs are important to quantify exchanges of CO2 between reservoirs. The amount of 14C is commonly reported in the so-called Delta notation, i.e., Δ14C, the decay- and fractionation-corrected departure of the ratio of 14C to total C from that ratio in an absolute international standard; this Delta notation permits direct comparison of 14C/C ratios in the several reservoirs. However, as Δ14C of atmospheric CO2, Δ14CO2 is based on the ratio of 14CO2 to total atmospheric CO2, its value can and does change not just because of change in the amount of atmospheric14CO2 but also because of change in the amount of total atmospheric CO2, complicating ascription of change in Δ14CO2 to change in one or the other quantity. Here we suggest that presentation of atmospheric 14CO2 amount as mole fraction relative to dry air (moles of 14CO2 per moles of dry air in Earth’s atmosphere), or as moles or molecules of 14CO2 in Earth’s atmosphere, all readily calculated from Δ14CO2 and the amount of atmospheric CO2 (with slight dependence on δ13CO2), complements presentation only as Δ14CO2, and can provide valuable insight into the evolving budget and distribution of atmospheric 14CO2.
Studies of pre-bomb mollusks live-collected around the Australian coastline have concluded that near-shore marine radiocarbon reservoir effects are small and relatively uniform. These studies are based on limited samples of sometimes dubious quality representing only selective parts of Australia’s lengthy coastline. We systematically examine spatial variability in the marine radiocarbon reservoir effect (ΔR) through analysis of 292 live-collected mollusk samples across the Australian mainland coasts and near-shore islands subject to strict selection criteria. This study presents 233 new ΔR values combined with an evaluation of 59 previously published values. Results demonstrate significant spatial variability in marine radiocarbon reservoir effects across the study region. ΔR values range from 68 ± 24 14C years off the Pilbara region of Western Australia to –337 ± 46 14C years in the southern Gulf of Carpentaria in Queensland. Most sets of local values exhibit internal consistency, reflecting the dominant influence of regional oceanography, including depletion in ΔR values southwards along the eastern Australian coastline coincident with the East Australian Current. Anomalous values are attributed to inaccurate documentation, species-specific relationships with the carbon cycle and/or short-term fluctuations in marine radiocarbon activities. To account for the heterogeneous distribution of marine 14C, we recommend using a location specific ΔR value calculated using the Australian ΔR Calculator, available at: https://delta-r-calc.jcu.io/.
Archaeological dung pellets are time capsules of ancient herbivore diets and gut flora, informing on past agropastoral activity, ecology, and animal health. Improving multi-proxy approaches is key to maximizing this finite archaeological resource. Through experiments with standard pretreatments used in radiocarbon (14C) dating, we address a fundamental problem in maximal multi-proxy analysis: How to chronometrically date individual caprine pellets while conserving as much as possible for additional analyses? We applied acid-alkali-acid (AAA) or acid-only pretreatments to 37 samples of ancient and recent sheep/goat dung pellets from sites in the Negev desert, Israel, measuring weight-loss due to pretreatment. Shavings of outer surfaces and remaining inner pellets of four pairs were dated and compared. We found that (i) sample-specific factors affect pretreatment survivability, including preservation quality and initial sample size; (ii) given sufficient start weight, AAA can be used to pretreat sheep/goat coprolites; (iii) 100 mg appeared a desirable minimum sample weight before pretreatment; and (iv) shavings of coprolites’ outer surface produced 14C dates equivalent to dates obtained from inner coprolites. Whereas standard coprolite analysis protocols discard shavings removed from outer surfaces to avoid contamination, our findings indicate their efficacy for 14C dating. This offers an important addition to workflows for multi-proxy coprolite analysis.
The Marine20 radiocarbon (14C) age calibration curve, and all earlier marine 14C calibration curves from the IntCal group, must be used extremely cautiously for the calibration of marine 14C samples from polar regions (outside ∼ 40ºS–40ºN) during glacial periods. Calibrating polar 14C marine samples from glacial periods against any Marine calibration curve (Marine20 or any earlier product) using an estimate of ${\rm{\Delta R}}$, the regional 14C depletion adjustment, that has been obtained from samples in the recent (non-glacial) past is likely to lead to bias and overconfidence in the calibrated age. We propose an approach to calibration that aims to address this by accounting for the possibility of additional, localized, glacial 14C depletion in polar oceans. We suggest, for a specific polar location, bounds on the value of ${\rm{\Delta }}{{\rm{R}}_{20}}\left( {\rm{\theta }} \right)$ during a glacial period. The lower bound ${\rm{\Delta R}}_{20}^{{\rm{Hol}}}$ may be based on 14C samples from the recent non-glacial (Holocene) past and corresponds to a low-depletion glacial scenario. The upper bound, ${\rm{\Delta R}}_{20}^{{\rm{GS}}}$, representing a high-depletion scenario is found by increasing ${\rm{\Delta R}}_{20}^{{\rm{Hol}}}$ according to the latitude of the 14C sample to be calibrated. The suggested increases to obtain ${\rm{\Delta R}}_{20}^{{\rm{GS}}}$ are based upon simulations of the Hamburg Large Scale Geostrophic Ocean General Circulation Model (LSG OGCM). Calibrating against the Marine20 curve using the upper and lower ${\rm{\Delta }}{{\rm{R}}_{20}}$ bounds provide estimates of calibrated ages for glacial 14C samples in high- and low-depletion scenarios which should bracket the true calendar age of the sample. In some circumstances, users may be able to determine which depletion scenario is more appropriate using independent paleoclimatic or proxy evidence.
The lack of systematic chronologies is a key problem for the archaeological sites of Altai and adjacent territories during the Great Migration Period. Here we present an attempt to establish the chronology of the Bulan-Koby culture objects of the Karban-I necropolis by correlation of accelerator mass spectrometry radiocarbon (AMS 14C) data from human remains with data from archaeological dating methods. This is the first application of such a combined targeted 14C and archaeological approach to the chronology of the Great Migration Period materials of northern Altai, and in particular the Bulan-Koby culture. Systematic analysis of the mutual occurrence of dated types of certain grave goods and 14C dating of a series of samples supports a predominant period of use for the site that spans the 2nd–3rd c. AD, which corresponds to the early Xianbei period. This study demonstrates strong agreement between the indicators obtained by archaeological and radiocarbon methods, suggesting chronological consistency of the necropolis which functioned at the beginning of the Great Migration Period. The very combination of the two techniques will allow more precise and detailed chronologies for other archaeological complexes of Altai and adjacent territories from the first centuries of the 1st mil. AD, which is the basis of historical reconstructions.
Radiocarbon (14C) concentrations in the oceans are different from those in the atmosphere. Understanding these ocean-atmospheric 14C differences is important both to estimate the calendar ages of samples which obtained their 14C in the marine environment, and to investigate the carbon cycle. The Marine20 radiocarbon age calibration curve is created to address these dual aims by providing a global-scale surface ocean record of radiocarbon from 55,000–0 cal yr BP that accounts for the smoothed response of the ocean to variations in atmospheric 14C production rates and factors out the effect of known changes in global-scale palaeoclimatic variables. The curve also serves as a baseline to study regional oceanic 14C variation. Marine20 offers substantial improvements over the previous Marine13 curve. In response to community questions, we provide a short intuitive guide, intended for the lay-reader, on the construction and use of the Marine20 calibration curve. We describe the choices behind the making of Marine20, as well as the similarities and differences compared with the earlier Marine calibration curves. We also describe how to use the Marine20 curve for calibration and how to estimate ΔR—the localized variation in the oceanic 14C levels due to regional factors which are not incorporated in the global-scale Marine20 curve. To aid understanding, illustrative worked examples are provided.
In this paper we evaluate the extent of freshwater reservoir effects (37 samples across 12 locations) and present new data from various archaeological sites in the Eurasian Steppe. Together with a summary of previous research on modern and archaeological samples, this provides the most up-to-date map of the freshwater reservoir offsets in the region. The data confirm previous observations highlighting that FREs are widespread but highly variable in the Eurasian Steppe in both modern and archaeological samples. Radiocarbon dates from organisms consuming aquatic sources, including humans, dogs, bears, aquatic birds and terrestrial herbivores (such as elk feeding on water plants), fish and aquatic mammals, as well as food crusts, could be misleading, but need to be assessed on a case-by-case basis.
Caves containing perennial ice deposits make up a little-known, but emerging part of the cryosphere under increasing scrutiny from the scientific community. M-17, a sag-type ice cave opening at 1879 m asl in the Tolminski Migovec massif of the Julian Alps (NW Slovenia) contains a perennial underground ice deposit whose paleoclimate sensitivity is poorly understood and whose longevity under current climate change is at risk. The past mass balance of this cave is constrained using wood macro-remains embedded in ice. Accelerator mass spectrometry radiocarbon dating of 18 wood samples embedded in ice provides the largest currently available dataset for a subterranean ice deposit in the southern European Alps. The reconstructed chronostratigraphy reveals three main phases of likely positive ice balance around 900–1100 AD, 1200–1300 AD, and 1700–1800 AD, as well as a period of negative mass balance around 1300–1400 AD. The onset of cave glaciation is deemed to have occurred no later than about 900 AD, with evidence of overall positive ice mass balance during multi-decadal periods characterized by cooler-than-average summers and wetter-than-average springs. Conversely, negative mass balance is recorded during a period warmer-than-average summers and dry springs. The cave has experienced ice mass loss since its discovery in the 1980s.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, with its impact on our way of life, is affecting our experiences and mental health. Notably, individuals with mental disorders have been reported to have a higher risk of contracting SARS-CoV-2. Personality traits could represent an important determinant of preventative health behaviour and, therefore, the risk of contracting the virus.
Aims
We examined overlapping genetic underpinnings between major psychiatric disorders, personality traits and susceptibility to SARS-CoV-2 infection.
Method
Linkage disequilibrium score regression was used to explore the genetic correlations of coronavirus disease 2019 (COVID-19) susceptibility with psychiatric disorders and personality traits based on data from the largest available respective genome-wide association studies (GWAS). In two cohorts (the PsyCourse (n = 1346) and the HeiDE (n = 3266) study), polygenic risk scores were used to analyse if a genetic association between, psychiatric disorders, personality traits and COVID-19 susceptibility exists in individual-level data.
Results
We observed no significant genetic correlations of COVID-19 susceptibility with psychiatric disorders. For personality traits, there was a significant genetic correlation for COVID-19 susceptibility with extraversion (P = 1.47 × 10−5; genetic correlation 0.284). Yet, this was not reflected in individual-level data from the PsyCourse and HeiDE studies.
Conclusions
We identified no significant correlation between genetic risk factors for severe psychiatric disorders and genetic risk for COVID-19 susceptibility. Among the personality traits, extraversion showed evidence for a positive genetic association with COVID-19 susceptibility, in one but not in another setting. Overall, these findings highlight a complex contribution of genetic and non-genetic components in the interaction between COVID-19 susceptibility and personality traits or mental disorders.
Pesticide handling is a critical component of many food supply chains yet labor markets for pesticide handlers are little studied. This study uses data from the U.S. national survey to show that relative to other farmworkers, pesticide handlers get paid 15% more. To understand this premium, matching techniques are used to identify workers who are observationally equivalent in every way except pesticide handling. Using these methods, approximately half of the wage premium can be related back to observable characteristics, including crop type, geographic location, legal work authorization, education, experience, and other personal characteristics.
In the late 1950s it was recognized that levels of atmospheric radiocarbon (14C) had not been constant over time. Since then, researchers have sought to document those changes, initially through measurements of known age tree rings and more recently using other archives to create curves to correct or calibrate radiocarbon ages to calendar ages. This paper highlights some, but by no means all, of the efforts to create and extend radiocarbon calibration curves.
The Quaternary Isotope Laboratory (QIL) at the University of Washington was launched in 1969 and directed by Minze Stuiver until his retirement in 1998. Here we review some of the scientific work undertaken in the QIL and the memories of some of Minze’s former students and colleagues.
In this paper we discuss recent developments in documenting the spread of millet across the Eurasian steppes. We emphasize that, despite a recent proposal that millet consumption in southern Siberia can be attributed to the Early Bronze Age (i.e., the late third to early second millennium BC), at present there are no direct data for southern Siberia indicating the consumption of millet prior to the Late Bronze Age, from the 14th century BC. We also present in full the combined stable isotope and 14C datasets from the Minusinsk Basin to support this conclusion.