We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
England's primary care service for psychological therapy (Improving Access to Psychological Therapies [IAPT]) treats anxiety and depression, with a target recovery rate of 50%. Identifying the characteristics of patients who achieve recovery may assist in optimizing future treatment. This naturalistic cohort study investigated pre-therapy characteristics as predictors of recovery and improvement after IAPT therapy.
Methods
In a cohort of patients attending an IAPT service in South London, we recruited 263 participants and conducted a baseline interview to gather extensive pre-therapy characteristics. Bayesian prediction models and variable selection were used to identify baseline variables prognostic of good clinical outcomes. Recovery (primary outcome) was defined using (IAPT) service-defined score thresholds for both depression (Patient Health Questionnaire [PHQ-9]) and anxiety (Generalized Anxiety Disorder [GAD-7]). Depression and anxiety outcomes were also evaluated as standalone (PHQ-9/GAD-7) scores after therapy. Prediction model performance metrics were estimated using cross-validation.
Results
Predictor variables explained 26% (recovery), 37% (depression), and 31% (anxiety) of the variance in outcomes, respectively. Variables prognostic of recovery were lower pre-treatment depression severity and not meeting criteria for obsessive compulsive disorder. Post-therapy depression and anxiety severity scores were predicted by lower symptom severity and higher ratings of health-related quality of life (EuroQol questionnaire [EQ5D]) at baseline.
Conclusion
Almost a third of the variance in clinical outcomes was explained by pre-treatment symptom severity scores. These constructs benefit from being rapidly accessible in healthcare services. If replicated in external samples, the early identification of patients who are less likely to recover may facilitate earlier triage to alternative interventions.
Mass-loss and radiation feedback from evolving massive stars produce galactic-scale superwinds, sometimes surrounded by pressure-driven bubbles. Using the time-dependent stellar population typically seen in star-forming regions, we conduct hydrodynamic simulations of a starburst-driven superwind model coupled with radiative efficiency rates to investigate the formation of radiative cooling superwinds and bubbles. Our numerical simulations depict the parameter space where radiative cooling superwinds with or without bubbles occur. Moreover, we employ the physical properties and time-dependent ionization states to predict emission line profiles under the assumption of collisional ionization and non-equilibrium ionization caused by wind thermal feedback in addition to photoionization created by the radiation background. We see the dependence of non-equilibrium ionization structures on the time-evolving ionizing source, leading to a deviation from collisional ionization in radiative cooling wind regions over time.
Galeaclolusite, [Al6(AsO4)3(OH)9(H2O)4]⋅8H2O, is a new secondary hydrated aluminium arsenate mineral from Cap Garonne, Var, France. It forms crusts and spheroids of white fibres up to 50 μm long by 0.4 μm wide and only 0.1 μm thick. The fibres are elongated along [001] and flattened on (100). The calculated density is 2.27 g⋅cm–3. Optically, galeaclolusite is biaxial with α = 1.550(5), β not determined, γ = 1.570(5) (white light) and partial orientation: Z = c (fibre axis). Electron microprobe analyses coupled with crystal structure refinement results gives an empirical formula based on 33 O atoms of Al5.72Si0.08As2.88O33H34.12. Galeaclolusite is orthorhombic, Pnma, with a = 19.855(4), b = 17.6933(11), c = 7.7799(5) Å, V = 2733.0(7) Å3 and Z = 4. The crystal structure of galeaclolusite was established from its close relationship to bulachite and refined using synchrotron powder X-ray diffraction data. It is based on heteropolyhedral layers, parallel to (100), of composition Al6(AsO4)3(OH)9(H2O)4 and with H-bonded H2O between the layers. The layers contain [001] spiral chains of edge-shared octahedra, decorated with corner-connected AsO4 tetrahedra, that are the same as in the mineral liskeardite.
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$ T), compact ($R_0 = 1.85$ m, $a = 0.57$ m), superconducting, D-T tokamak with the goal of producing fusion gain $Q>2$ from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of $Q>2$ is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of $H_{98,y2} = 1$, SPARC is projected to attain $Q \approx 11$ and $P_{\textrm {fusion}} \approx 140$ MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$ keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
Owing to its high magnetic field, high power, and compact size, the SPARC experiment will operate with divertor conditions at or above those expected in reactor-class tokamaks. Power exhaust at this scale remains one of the key challenges for practical fusion energy. Based on empirical scalings, the peak unmitigated divertor parallel heat flux is projected to be greater than 10 GW m−2. This is nearly an order of magnitude higher than has been demonstrated to date. Furthermore, the divertor parallel Edge-Localized Mode (ELM) energy fluence projections (~11–34 MJ m−2) are comparable with those for ITER. However, the relatively short pulse length (~25 s pulse, with a ~10 s flat top) provides the opportunity to consider mitigation schemes unsuited to long-pulse devices including ITER and reactors. The baseline scenario for SPARC employs a ~1 Hz strike point sweep to spread the heat flux over a large divertor target surface area to keep tile surface temperatures within tolerable levels without the use of active divertor cooling systems. In addition, SPARC operation presents a unique opportunity to study divertor heat exhaust mitigation at reactor-level plasma densities and power fluxes. Not only will SPARC test the limits of current experimental scalings and serve for benchmarking theoretical models in reactor regimes, it is also being designed to enable the assessment of long-legged and X-point target advanced divertor magnetic configurations. Experimental results from SPARC will be crucial to reducing risk for a fusion pilot plant divertor design.
Gut microbiota data obtained by DNA sequencing are not only complex because of the number of taxa that may be detected within human cohorts, but also compositional because characteristics of the microbiota are described in relative terms (e.g., “relative abundance” of particular bacterial taxa expressed as a proportion of the total abundance of taxa). Nutrition researchers often use standard principal component analysis (PCA) to derive dietary patterns from complex food data, enabling each participant's diet to be described in terms of the extent to which it fits their cohort's dietary patterns. However, compositional PCA methods are not commonly used to describe patterns of microbiota in the way that dietary patterns are used to describe diets. This approach would be useful for identifying microbiota patterns that are associated with diet and body composition. The aim of this study is to use compositional PCA to describe gut microbiota profiles in 5 year old children and explore associations between microbiota profiles, diet, body mass index (BMI) z-score, and fat mass index (FMI) z-score. This study uses a cross-sectional data for 319 children who provided a faecal sample at 5 year of age. Their primary caregiver completed a 123-item quantitative food frequency questionnaire validated for foods of relevance to the gut microbiota. Body composition was determined using dual-energy x-ray absorptiometry, and BMI and FMI z-scores calculated. Compositional PCA identified and described gut microbiota profiles at the genus level, and profiles were examined in relation to diet and body size. Three gut microbiota profiles were found. Profile 1 (positive loadings on Blautia and Bifidobacterium; negative loadings on Bacteroides) was not related to diet or body size. Profile 2 (positive loadings on Bacteroides; negative loadings on uncultured Christensenellaceae and Ruminococcaceae) was associated with a lower BMI z-score (r = -0.16, P = 0.003). Profile 3 (positive loadings on Faecalibacterium, Eubacterium and Roseburia) was associated with higher intakes of fibre (r = 0.15, P = 0.007); total (r = 0.15, P = 0.009), and insoluble (r = 0.13, P = 0.021) non-starch polysaccharides; protein (r = 0.12, P = 0.036); meat (r = 0.15, P = 0.010); and nuts, seeds and legumes (r = 0.11, P = 0.047). Further regression analyses found that profile 2 and profile 3 were independently associated with BMI z-score and diet respectively. We encourage fellow researchers to use compositional PCA as a method for identifying further links between the gut, diet and obesity, and for developing the next generation of research in which the impact on body composition of dietary interventions that modify the gut microbiota is determined.
Thermal energies deposited by OB stellar clusters in starburst galaxies lead to the formation of galactic superwinds. Multi-wavelength observations of starburst-driven superwinds pointed at complex thermal and ionization structures which cannot adequately be explained by simple adiabatic assumptions. In this study, we perform hydrodynamic simulations of a fluid model coupled to radiative cooling functions, and generate time-dependent non-equilibrium photoionization models to predict physical conditions and ionization structures of superwinds using the maihem atomic and cooling package built on the program flash. Time-dependent ionization states and physical conditions produced by our simulations are used to calculate the emission lines of superwinds for various parameters, which allow us to explore implications of non-equilibrium ionization for starburst regions with potential radiative cooling.
Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.
The type specimen of liskeardite, (Al, Fe)3AsO4(OH)6·5H2O, from the Marke Valley Mine, Liskeard District, Cornwall, has been reinvestigated. The revised composition from electron microprobe analyses and structure refinement is [Al29.2Fe2.8(AsO4)18(OH)42(H2O)22]·52H2O.The crystal structure was determined using synchrotron data collected on a 2 μm diameter fibre at 100 K. Liskeardite has monoclinic symmetry, space group I2, with the unit-cell parameters a = 24.576(5), b = 7.754(2) Å, c = 24.641(5) Å, and β= 90.19(1)º. The structure was refined to R = 0.059 for 9769 reflections with I > 3σ(I). It is of an open framework type in which intersecting polyhedral slabs parallel to (101) and (10) form 17.4 Å × 17.4 Å channels along [010], with watermolecules occupying the channels. Small amounts (<1 wt.%) of Na, K and Cu are probably adsorbed at the channel walls The framework comprises columns of pharmacoalumite-type, intergrown with chiral chains of six cis edge-shared octahedra. It can be described in terms of cubic closepacking, with vacancies at both the anion and cation sites. The compositional and structural relationships between liskeardite and pharmacoalumite are discussed and a possible mechanism for liskeardite formation is presented.
Nordgauite, MnAl2(PO4)2(F,OH)2·5H2O, is a new secondary phosphate from the Hagendorf-Süd pegmatite, Bavaria, Germany. It occurs as white to off-white compact waxy nodules and soft fibrous aggregates a few millimetres across in altered zwieselite—triplite. Individual crystals are tabular prismatic, up to 200 μ long and 10 μ wide. Associated minerals include fluorapatite, sphalerite, uraninite, a columbite—tantalite phase, metastrengite, several unnamed members of the whiteite—jahnsite family, and a new analogue of kingsmountite. The fine-grained nature of nordgauite meant that only limited physical and optical properties could be obtained; streak is white; fracture, cleavage and twinning cannot be discerned. Dmeas. and Dcaic. are 2.35 and 2.46 g cm–3, respectively; the average RI is n = 1.57; the Gladstone-Dale compatibility is —0.050 (good). Electron microprobe analysis gives (wt.%): CaO 0.96. MgO 0.12, MnO 14.29, FeO 0.60, ZnO 0.24, A12O3 22.84, P2O5 31.62, F 5.13 and H2O 22.86 (by CHNX less F=O 2.16, total 96.50. The corresponding empirical formula is (Mn0.90Ca0.08Fe0.04Zn0.01Mg0.01)-Σi.04Ai2.0i(PO4)2[F1.21,(OH)0.90]Σ2.11·5.25H2O. Nordgauite is triclinic, space group P1̄, with the unit-cell parameters: a = 9.920(4), b = 9.933(3), c = 6.087(2) Å, α = 92.19(3), β = 100.04(3), γ = 97.61(3)°, V = 584.2(9) Å3 and Z = 2. The strongest lines in the XRD powder pattern are [d in Å (I) (hkl)] 9.806 (100)(010), 7.432 (40)(l1̄0), 4.119 (20)(210), 2.951 (16)(031), 4.596 (12)(21̄O), 3.225 (12)(220) and 3.215 (12)(121). The structure of nordgauite was solved using synchrotron XRD data collected on a 60 μm × 3 μm × 4 μm needle and refined to R1 = 0.0427 for 2374 observed reflections with F > 4σ(F). Although nordgauite shows stoichiometric similarities to mangangordonite and kastningite, its structure is more closely related to those of vauxite and montgomeryite in containing zig-zag strings of corner-connected Al-centred octahedra along [011], where the shared corners are alternately in cis and trans configuration. These chains link through corner-sharing with PO4 tetrahedra along [001] to form (100) slabs that are interconnected via edge-shared dimers of MnO6 polyhedra and other PO4 tetrahedra.
Bariopharmacoalumite-Q2a2b2c, Ba0.5(Cu,ZnO)0.1H0.6[Al4(OH)4(As0.9Al0.1O4)3]·5.5H2O, from the south mine of the old copper mine at Cap Garonne, France, has a 2 × 2 × 2 I-centred tetragonal superstructure of the basic pharmacosiderite-type structure. Cell parameters are a = 15.405(2) Å and c = 15.553(3) Å. The structure was determined and refined in I2m to R1= 0.057 for 2697 reflections with I > 2σ(I), using synchrotron X-ray data on a twinned crystal. The origin of the superlattice cell doubling was determined to be due predominantly to the ordering of Ba atoms in half of the [0 0 1] channels, centred at (0, 0, 0) and (½, ½, 0). The other channels, centred at (½, 0, 0) and (0, ½, 0), were found to be occupied by corner-connected chains of Cu/Zn-centred square planar units.
Flurlite, ideally Zn3Mn2+Fe3+(PO4)3(OH)2·9H2O, is a new mineral from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Flurlite occurs as ultrathin (<1 μm) translucent plateletsthat form characteristic twisted accordion-like aggregates. The colour varies from bright orange red to dark maroon red. Cleavage is perfect parallel to (001). The mineral occurs on mitridatite and is closely associated with plimerite. Other associated minerals are beraunite, schoonerite,parascholzite, robertsite and altered phosphophyllite. The calculated density of flurlite is 2.84 g cm–3. It is optically biaxial (–), α = 1.60(1), β= 1.65(1) and γ = 1.68(1), with weak dispersion and parallel extinction, X ≈ c, Y≈ a, Z ≈ b. Pleochroism is weak, with colours: X = pale yellow, Y = pale orange, Z = orange brown. Electron microprobe analyses (average of seven) with FeO and Fe2O3 apportioned and H2O calculated on structuralgrounds, gave ZnO 25.4, MnO 5.28, MgO 0.52, FeO 7.40, Fe2O3 10.3, P2O5 27.2, H2O 23.1, total 99.2 wt.%. The empirical formula, based on 3 P a.p.f.u. is Zn2.5Mn2+0.6Fe2+0.8Mg0.1Fe3+(PO4)3(OH)2·9H2O.Flurlite is monoclinic, P21/m, with the unit-cell parameters (at 100 K) of a = 6.3710(13), b = 11.020(2), c = 13.016(3) Å, β = 99.34 (3)°. The strongest lines in the X-ray powder diffraction pattern are [dobs in Å(I)(hkl)] 12.900(100)(001); 8.375(10)(011); 6.072(14)(101); 5.567(8)(012); 4.297(21)(003); 2.763(35)(040). Flurlite (R1 = 0.057 for 995 F > 4σ(F)) has a heteropolyhedral layer structure, with layers parallel to (001) and with water molecules packing betweenthe layers. The slab-like layers contain two types of polyhedral chains running parallel to [100]: (a) chains of edge-sharing octahedra containing predominantly Zn and (b) chains in which Fe3+-centred octahedra share their apices with dimers comprising Zn-centred trigonalbipyramids sharing an edge with PO4 tetrahedra. The two types of chains are interconnected by corner-sharing along [010]. A second type of PO4 tetrahedron connects the chains to MnO2(H2O)4 octahedra along [010] to complete the structureof the (001) slabs. Flurlite has the same stoichiometry as schoonerite, but with dominant Zn rather than Fe2+ in the edge-shared chains. Schoonerite has a similar heteropolyhedral layer structure with the same layer dimensions 6.4 × 11.1 Å. The different symmetry (orthorhombic,Pmab) for schoonerite reflects a different topology of the layers.
Crystals of laueite, Mn2+Fe23+(PO4)2(OH)2·8H2O, from the Cornelia mine open cut, Hagendorf Süd, Bavaria, are zoned due to aluminium incorporation at the iron sites, with analysed Al2O3 contents varying up to 11 wt.%. Synchrotron X-ray data were collected on two crystals with different Al contents and the structures refined. The laueite structure contains two independent Fe3+-containing sites; M2 and M3, which alternate in 7 Å corner-connected octahedral chains. The coordination polyhedra are different for the two sites, M2O4(OH)2 and M3O2(OH)2(H2O)2 respectively. The structure refinements show that Al preferentially orders into site M3. Refined site occupancies for M2 and M3 for the two crystals are: for crystal L-1, M2 = 0.70(1) Fe + 0.30(1) Al, M3 = 0.54(1) Fe + 0.46(1) Al and for crystal L-2, M2 = 0.67(1) Fe + 0.33(1) Al, M3 = 0.48(1) Fe + 0.52(1) Al. For crystal L-2, the octahedral chains have dominant Fe in M2, alternating with dominant Al in M3 along the chain, an ordering phenomenon not previously reported for laueite-related minerals.
Steinmetzite, ideally Zn2Fe3+(PO4)2(OH)·3H2O, is a new mineral from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Steinmetzite was found in a highly oxidized zone of the Cornelia mine at Hagendorf-Süd. It has formed by alteration of phosphophyllite, involving oxidation of the iron and some replacement of Zn by Fe. Steinmetzite lamellae co-exist with an amorphous Fe-rich phosphate in pseudomorphed phosphophyllite crystals. The lamellae are only a few μm thick and with maximum dimension ∼50 μm. The phosphophyllite pseudomorphs have a milky opaque appearance, often with a glazed yellow to orange weathering rind and with lengths ranging from sub-mm to 1 cm. Associated minerals are albite, apatite, chalcophanite, jahnsite, mitridatite, muscovite, quartz and wilhelmgümbelite.Goethite and cryptomelane are also abundant in the oxidized zone. The calculated density is 2.96 g cm–3. Steinmetzite is biaxial (–) with measured refractive indices α = 1.642(2), β = 1.659 (calc.), γ = 1.660(2) (white light). 2V(meas) = 27(1)°; orientation is Y ≈ b, X ^c ≈ 27°, with crystals flattened on {010} and elongated on [001]. Pleochroism shows shades of pale brown; Y > X ≈ Z. Electron microprobe analyses (average of seven crystals) with Fe reported as Fe2O3 and with H2O calculated from the structure gave ZnO 31.1, MnO 1.7, CaO 0.5, Fe2O3 21.9, Al2O3 0.3, P2O5 32.9, H2O 14.1 wt.%, total 102.5%. The empirical formula based on 2 P and 12 O, with all iron as ferric and OH–adjusted for charge balance is Zn1.65Fe1.193+ Mn0.112+Ca0.03Al0.023+(PO4)2(OH)1.21·2.79H2O. The simplified formula is Zn2Fe3+(PO4)2(OH)·3H2O.Steinmetzite is triclinic, P1̄, with unit-cell parameters: a = 10.438(2), b = 5.102(1), c = 10.546(2) Å, α = 91.37(2), β = 115.93(2) and γ = 94.20(2)°. V = 502.7(3) Å3, Z = 2. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å (I) (hkl)] 9.313(65) (100), 5.077(38) (010), 4.726(47) (002), 4.657(100) (200), 3.365 (55) (3̄02), 3.071(54) (11̄2) and 2.735(48) (3̄1̄2). The structure is related to that of phosphophyllite.
Kummerite, ideally Mn2+Fe3+A1(PO4)2(OH)2.8H2O, is a new secondary phosphate mineral belonging to the laueite group, from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Kummerite occurs as sprays or rounded aggregates of very thin, typically deformed, amber yellow laths. Cleavage is good parallel to ﹛010﹜. The mineral is associated closely with green Zn- and Al-bearing beraunite needles. Other associated minerals are jahnsite-(CaMnMn) and Al-bearing frondelite. The calculated density of kummerite is 2.34 g cm 3. It is optically biaxial (-), α= 1.565(5), β = 1.600(5) and y = 1.630(5), with weak dispersion. Pleochroism is weak, with amber yellow tones. Electron microprobe analyses (average of 13 grains) with H2O and FeO/Fe2O3 calculated on structural grounds and normalized to 100%, gave Fe2O3 17.2, FeO 4.8, MnO 5.4, MgO 2.2, ZnO 0.5, Al2O3 9.8, P2O5 27.6, H2O 32.5, total 100 wt.%. The empirical formula, based on 3 metal apfu is (Mn2+0.37Mg0.27Zn0.03Fe2+0.33)Σ1.00(Fe3+1.06Al0. 94)Σ2.00PO4)1.91(OH)2.27(H2O)7.73. Kummerite is triclinic, P1̄, with the unit-cell parameters of a = 5.316(1) Å, b =10.620(3) Å , c = 7.118(1) Å, α = 107.33(3)°, β= 111.22(3)°, γ = 72.22(2)° and V= 348.4(2) Å3. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I) (hkl)] 9.885 (100) (010); 6.476 (20) (001); 4.942 (30) (020); 3.988 (9) (̄110); 3.116 (18) (1̄20); 2.873 (11) (1̄21). Kummerite is isostructural with laueite, but differs in having Al and Fe3+ ordered into alternate octahedral sites in the 7.1 Å trans-connected octahedral chains.
Eating less frequently is associated with increased obesity risk in older children but data are potentially confounded by reverse causation, where bigger children eat less often in an effort to control their weight. Longitudinal data, particularly in younger children, are scarce. We aimed to determine whether eating frequency (meals and snacks) at 2 years of age is associated with past, current or subsequent BMI.
Design
Cohort analysis of a randomised controlled trial. Eating frequency at 2 years of age was estimated using 48 h diaries that recorded when each child ate meals and snacks (parent-defined) in five-minute blocks. Body length/height and weight were measured at 1, 2 and 3·5 years of age. Linear regression assessed associations between the number of eating occasions and BMI Z-score, before and after adjustment for potential confounding variables.
Setting
Prevention of Overweight in Infancy (POI) study, Dunedin, New Zealand.
Subjects
Children (n 371) aged 1–3·5 years.
Results
On average, children ate 5·5 (sd 1·2) times/d at 2 years of age, with most children (88–89 %) eating 4–7 times/d. Eating frequency at 2 years was not associated with current (difference in BMI Z-score per additional eating occasion; 95 % CI: −0·02; −0·10, 0·05) or subsequent change (0·02; −0·03, 0·06) in BMI. Similarly, BMI at age 1 year did not predict eating frequency at 2 years of age (difference in eating frequency per additional BMI Z-score unit; 95 % CI: −0·03; −0·19, 0·13).
Conclusions
Number of eating occasions per day was not associated with BMI in young children in the present study.
Outbreaks of cutaneous infectious disease in amphibians are increasingly being attributed to an overlooked group of fungal-like pathogens, the Dermocystids. During the last 10 years on the Isle of Rum, Scotland, palmate newts (Lissotriton helveticus) have been reportedly afflicted by unusual skin lesions. Here we present pathological and molecular findings confirming that the pathogen associated with these lesions is a novel organism of the order Dermocystida, and represents the first formally reported, and potentially lethal, case of amphibian Dermocystid infection in the UK. Whilst the gross pathology and the parasite cyst morphology were synonymous to those described in a study from infected L. helveticus in France, we observed a more extreme clinical outcome on Rum involving severe subcutaneous oedema. Phylogenetic topologies supported synonymy between Dermocystid sequences from Rum and France and as well as their distinction from Amphibiocystidium spp. Phylogenetic analysis also suggested that the amphibian-infecting Dermocystids are not monophyletic. We conclude that the L. helveticus-infecting pathogen represents a single, novel species; Amphibiothecum meredithae.
The movements of fluid–fluid interfaces and the common curve are an important aspect of two-fluid-phase flow through porous media. The focus of this work is to develop, apply and evaluate methods to simulate two-fluid-phase flow in porous medium systems at the microscale and to demonstrate how these results can be used to support evolving macroscale models. Of particular concern is the problem of spurious velocities that confound the accurate representation of interfacial dynamics in such systems. To circumvent this problem, a combined level-set and lattice-Boltzmann method is advanced to simulate and track the dynamics of the fluid–fluid interface and of the common curve during simulations of two-fluid-phase flow in porous media. We demonstrate that the interface and common curve velocities can be determined accurately, even when spurious currents are generated in the vicinity of interfaces. Static and dynamic contact angles are computed and shown to agree with existing slip models. A resolution study is presented for dynamic drainage and imbibition in a sphere pack, demonstrating the sensitivity of averaged quantities to resolution.
During 1990 we surveyed the southern sky using a multi-beam receiver at frequencies of 4850 and 843 MHz. The half-power beamwidths were 4 and 25 arcmin respectively. The finished surveys cover the declination range between +10 and −90 degrees declination, essentially complete in right ascension, an area of 7.30 steradians. Preliminary analysis of the 4850 MHz data indicates that we will achieve a five sigma flux density limit of about 30 mJy. We estimate that we will find between 80 000 and 90 000 new sources above this limit. This is a revised version of the paper presented at the Regional Meeting by the first four authors; the surveys now have been completed.
Approximately 153 million children worldwide are orphaned and vulnerable to potentially traumatic events (PTEs). Gender differences in PTEs in low- and middle-income countries (LMIC) are not well-understood, although support services and prevention programs often primarily involve girls.
Methods.
The Positive Outcomes for Orphans study used a two-stage, cluster-randomized sampling design to identify 2837 orphaned and separated children (OSC) in five LMIC in sub-Saharan Africa and Asia. We examined self-reported prevalence and incidence of several PTE types, including physical and sexual abuse, among 2235 children who were ≥10 years at baseline or follow-up, with a focus on gender comparisons.
Results.
Lifetime prevalence by age 13 of any PTE other than loss of a parent was similar in both boys [91.7% (95% confidence interval (CI) (85.0–95.5)] and girls [90.3% CI (84.2–94.1)] in institutional-based care, and boys [92.0% (CI 89.0–94.2)] and girls [92.9% CI (89.8–95.1)] in family-based care; annual incidence was similarly comparable between institution dwelling boys [23.6% CI (19.1,−29.3)] and girls [23.6% CI (18.6,−30.0)], as well as between family-dwelling boys [30.7% CI (28.0,−33.6)] and girls [29.3% CI (26.8,−32.0)]. Physical and sexual abuse had the highest overall annual incidence of any trauma type for institution-based OSC [12.9% CI (9.6–17.4)] and family-based OSC [19.4% CI (14.5–26.1)], although estimates in each setting were no different between genders.
Conclusion.
Prevalence and annual incidence of PTEs were high among OSC in general, but gender-specific estimates were comparable. Although support services and prevention programs are essential for female OSC, programs for male OSC are equally important.