We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Methamphetamine (METH) dependence is a globally significant public health concern with no efficacious treatment. Trait impulsivity is associated with the initiation, maintenance, and recurrence of substance abuse. However, the presence of these associations in METH addiction, as well as the underlying neurobiological mechanisms, remains incompletely understood.
Methods
We scanned 110 individuals with METH use disorder (MUDs) and 55 matched healthy controls (HCs) using T1-weighted imaging and assessed their drug use characteristics and trait impulsivity. Surface-based morphometry and graph theoretical analysis were used to investigate group differences in brain morphometry and network attributes. Partial correlations were conducted to investigate the relationships between brain morphometric changes, drug use parameters, and trait impulsivity. Mediation analyses examined how trait impulsivity and drug craving influenced the link between brain morphometric change and MUD severity in patients.
Results
MUDs exhibited thinner thickness in the left fusiform gyrus and right pars opercularis, as well as diminished small-world properties in their structural covariance networks (SCNs) compared to HCs. Furthermore, reduced cortical thickness in the right pars opercularis was linked to motor impulsivity (MI) and MUD severity, and the association between the right pars opercularis thickness and MUD severity was significantly mediated by both MI and cue-induced craving.
Conclusions
These findings suggest that MUDs exhibit distinct brain structural abnormalities in both the cortical thickness and SCNs and highlight the critical role of impulse control in METH addiction. This insight may offer a potential neurobiological target for developing therapeutic interventions to treat addiction and prevent relapse.
Employees’ organizational citizenship behavior (OCB) is an important determinant of organizational effectiveness; hence, scholars and practitioners are particularly interested in the factors, mechanisms, and conditions that promote such behaviors. Guided by the ability–motivation–opportunity framework, we draw on the social cognitive theory of moral thought and action to conceptualize a model that delineates the role of ethics-oriented human resource management (HRM) systems in promoting OCBs through the mediating role of employees’ moral attentiveness. We also refer to the job demands–resources theory to describe the moderating role of work-family balance in the indirect relationship between HRM systems and OCBs. The findings of an experiment involving 157 working adults (Study 1) and a three-wave field survey of 328 employees (Study 2) converge to support the hypothesized direct and indirect (via moral attentiveness) relationships between ethics-oriented HRM systems and OCBs as well as the first-stage moderating role of work-family balance.
Despite the important role of state-owned enterprises (SOEs) in government policy implementation, there is a lack of research on how SOEs owned by different government entities differ. We draw on an attention-based view (ABV) to understand how central government-owned (called central SOEs) and local government-owned enterprises (called local SOEs) differ in their response to digitalization, a major state objective in China in recent years. The two types of SOEs differ in the foundational feature of attention structure – the rules of the game (as embodied in their different goals, identities, and evaluation of top executives) – as well as important features such as governance structures and resources. These features can trigger more attention in central SOEs to digitalization. Given the interdependence of these features in shaping the structural distribution of attention, we further propose how governance structures and resources can influence strategic attention differently in SOEs with different rules of the game. The arguments are tested using data from all Chinese-listed manufacturing SOEs between 2009 and 2020. The study reveals different responses to national strategy between central and local SOEs due to their distinct attention structures designed by the state. It also extends the ABV and research on corporate digital transformation.
The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear.
Methods
By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders.
Results
SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07–1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06–1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04–1.18, p = 1.84 × 10−3).
Conclusions
We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.
In the absence of the necessary valley topography, karst depressions are sometimes used to construct conventional impoundments in order to contain tailings. Leakage is a primary concern for such impoundments. The purpose of the current study was to determine the characteristics and barrier performance of laterite mantling karst depressions, using, as an example, the Wujiwatang (WJWT) tailings impoundment, located in the Gejiu mining area, southwestern China. The geotechnical-hydrogeological properties, geochemistry, mineral compositions, and particle shapes of the laterite were investigated by geotechnical techniques, chemical analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the laterite contained poorly sorted particles that covered a wide spectrum of grain sizes (<5 mm to <50 nm), and was unexpectedly categorized as silty clay or silt with a high liquid limit. The continuous gradation and small D90 value helped the laterite achieve saturated hydraulic conductivities in the range of <10–6 cm/s required for impoundment liners. The laterite beneath the tailings impoundment was finer-grained and had a lower permeability than that of the laterite on the depression walls within the same depression. Geochemically and mineralogically, the laterite was classified as true laterite and its major mineralogical constituents were gibbsite and goethite with chlorite occurring in trace amounts. The laterite was dominated by subspherolitic–spherolitic cohesionless grains (concretions) made up of Al, Fe, Ti, and Mn oxides and hydroxides. The laterite did not have plasticity indices in the clay range. Fortunately, slopewash prior to tailings containment selectively transported the finer oxide concretions to the depression floor, creating a natural low-permeability barrier for the WJWT tailings impoundment. This is undoubtedly important for the planning and design of future karst depression-type tailings impoundments around the world.
High-intensity vortex beams with tunable topological charges and low coherence are highly demanded in applications such as inertial confinement fusion (ICF) and optical communication. However, traditional optical vortices featuring nonuniform intensity distributions are dramatically restricted in application scenarios that require a high-intensity vortex beam owing to their ineffective amplification resulting from the intensity-dependent nonlinear effect. Here, a low-coherence perfect vortex beam (PVB) with a topological charge as high as 140 is realized based on the super-pixel wavefront-shaping technique. More importantly, a globally adaptive feedback algorithm (GAFA) is proposed to efficiently suppress the original intensity fluctuation and achieve a flat-top PVB with dramatically reduced beam speckle contrast. The GAFA-based flat-top PVB generation method can pave the way for high-intensity vortex beam generation, which is crucial for potential applications in ICF, laser processing, optical communication and optical trapping.
The oscillatory Kelvin–Helmholtz (K–H) instability of a planar liquid sheet was experimentally investigated in the presence of an axial oscillating gas flow. An experimental system was initiated to study the oscillatory K–H instability. The surface wave growth rates were measured and compared with theoretical results obtained using the authors’ early linear method. Furthermore, in a larger parameter range experimentally studied, it is interesting that there are four different unstable modes: first disordered mode (FDM), second disordered mode (SDM), K–H harmonic unstable mode (KHH) and K–H subharmonic unstable mode (KHS). These unstable modes are determined by the oscillating amplitude, oscillating frequency and liquid inertia force. The frequencies of KHH are equal to the oscillating frequency; the frequency of KHS equals half the oscillating frequency, while the frequencies of FDM and SDM are irregular. By considering the mechanism of instability, the instability regime maps on the relative Weber number versus liquid Weber number (Werel–Wel) and the Weber number ratio versus the oscillating frequency (Werel/Wel–$\varOmega$s2) were plotted. Among these four modes, KHS is the most unexpected: the frequency of this mode is not equal to the oscillating frequency, but the surface wave can also couple with the oscillating gas flow. Linear instability theory was applied to divide the parameter range between the different unstable modes. According to linear instability theory, K–H and parametric unstable regions both exist. However, note that all four modes (KHH, KHS, FDM and SDM) corresponded primarily to the K–H unstable region obtained from the theoretical analysis. Nevertheless, the parametric unstable mode was also observed when the oscillating frequency and amplitude were relatively low, and the liquid inertia force was relatively high. The surface wave amplitude was small but regular, and the evolution of this wave was similar to that of Faraday waves. The wave oscillating frequency was half that of the surface wave.
One of the most common harmful mites in edible fungi is Histiostoma feroniarum Dufour (Acaridida: Histiostomatidae), a fungivorous astigmatid mite that feeds on hyphae and fruiting bodies, thereby transmitting pathogens. This study examined the effects of seven constant temperatures and 10 types of mushrooms on the growth and development of H. feroniarum, as well as its host preference. Developmental time for the total immature stages was significantly affected by the type of mushroom species, ranging from 4.3 ± 0.4 days (reared on Pleurotus eryngii var. tuoliensis Mou at 28°C) to 17.1 ± 2.3 days (reared on Auricularia polytricha Sacc. at 19°C). The temperature was a major factor in the formation of facultative heteromorphic deutonymphs (hypopi). The mite entered the hypopus stage when the temperature dropped to 16°C or rose above 31°C. The growth and development of this mite were significantly influenced by the type of species and variety of mushrooms. Moreover, the fungivorous astigmatid mite preferred to feed on the ‘Wuxiang No. 1’ strain of Lentinula edodes (Berk.) Pegler and the ‘Gaowenxiu’ strain of P. pulmonarius (Fr.) Quél., with a shorter development period compared with that of feeding on other strains. These results therefore quantify the effect of host type and temperature on fungivorous astigmatid mite growth and development rates, and provide a reference for applying mushroom cultivar resistance to biological pest control.
Diarrhoea caused by pathogens such as enterotoxigenic E. coli (ETEC) is a serious threat to the health of young animals and human infants. Here, we investigated the protective effect of fructo-oligosaccharides (FOS) on the intestinal epithelium with ETEC challenge in a weaned piglet model. Twenty-four weaned piglets were randomly divided into three groups: (1) non-ETEC-challenged control (CON); (2) ETEC-challenged control (ECON); and (3) ETEC challenge + 2·5 g/kg FOS (EFOS). On day 19, the CON pigs were orally infused with sterile culture, while the ECON and EFOS pigs were orally infused with active ETEC (2·5 × 109 colony-forming units). On day 21, pigs were slaughtered to collect venous blood and small intestine. Result showed that the pre-treatment of FOS improved the antioxidant capacity and the integrity of intestinal barrier in the ETEC-challenged pigs without affecting their growth performance. Specifically, compared with ECON pigs, the level of GSH peroxidase and catalase in the plasma and intestinal mucosa of EFOS pigs was increased (P < 0·05), and the intestinal barrier marked by zonula occluden-1 and plasmatic diamine oxidase was also improved in EFOS pigs. A lower level (P < 0·05) of inflammatory cytokines in the intestinal mucosa of EFOS pigs might be involved in the inhibition of TLR4/MYD88/NF-κB pathway. The apoptosis of jejunal cells in EFOS pigs was also lower than that in ECON pigs (P < 0·05). Our findings provide convincing evidence of possible prebiotic and protective effect of FOS on the maintenance of intestinal epithelial function under the attack of pathogens.
Polycarboxylate superplasticizer (PCE) is sensitive to the clay present in concrete aggregates. In particular, Montmorillonite (Mnt), an impurity inevitably contained in the aggregate, can significantly influence the performance of concrete. In an effort to improve the compatibility of PCE, a zwitterionic PCE with cationic amide groups and shorter side-chain lengths was synthesized via free radical copolymerization. The optimal synthesis condition was verified via Box-Behnken design. In addition to characterizing the PCE, the performance of PCE in cement pastes with or without Na-Mnt was examined and the underlying mechanism was explored. The results show that, compared with commercially available PCE, the required dosage of PCE for cements containing Na-Mnt decreased. Unlike commercially available PCE, no intercalation occured on the newly manufactured clay-tolerant PCE within the layers of Mnt, resulting in a greater sorption thickness and improved dispersion of the cements containing Na-Mnt.
The propagation of extraordinary and upper-hybrid waves in spin quantum magnetoplasmas with vacuum polarization effect is investigated. Based on the quantum magnetohydrodynamics model including Bohm potential, arbitrary relativistic degeneracy pressure and spin force, and Maxwell's equations modified by the spin current and vacuum polarization current, the dispersion relations of extraordinary and upper-hybrid waves are derived. The analytical and numerical results show that quantum effects (Bohm potential, degeneracy pressure and spin magnetization energy) and the vacuum polarization effect modify the propagation of the extraordinary wave. Under the action of a strong magnetic field, the plasma frequency is obviously increased by the vacuum polarization effect.
Coastal surveillance video helps officials to obtain on-site visual information on maritime traffic situations, which benefits building up the maritime transportation detection infrastructure. The previous ship detection methods focused on detecting distant small ships in maritime videos, with less attention paid to the task of ship detection from coastal surveillance video. To address this challenge, a novel framework is proposed to detect ships from coastal maritime images in three typical traffic situations in three consecutive steps. First the Canny detector is introduced to determine the potential ship edges in each maritime frame. Then, the self-adaptive Gaussian descriptor is employed to accurately rule out noisy edges. Finally, the morphology operator is developed to link the detected separated edges to connected ship contours. The model's performance is tested under three typical maritime traffic situations. The experimental results show that the proposed ship detector achieved satisfactory performance (in terms of precision, accuracy and time cost) compared with other state-of-the-art algorithms. The findings of the study offer the potential of providing real-time visual traffic information to maritime regulators, which is crucial for the development of intelligent maritime transportation.
Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks.
Methods
We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls).
Results
We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal−parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05).
Conclusions
The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory−motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.
To explore the effect of manno-oligosaccharide (MOS) on intestinal health in weaned pigs upon enterotoxigenic Escherichia coli K88 (ETEC) challenge, thirty-two male weaned pigs were randomly assigned into four groups. Pigs fed with a basal diet or basal diet containing MOS (0·6 g/kg) were orally infused with ETEC or culture medium. Results showed that MOS significantly elevated the digestibility of crude protein and gross energy in both ETEC-challenged and non-challenged pigs (P < 0·05). MOS also elevated serum concentrations of IgA and IgM (P < 0·05), but decreased serum concentrations of TNF-α, IL-1β and IL-6 (P < 0·05) in ETEC-challenged pigs. Interestingly, MOS increased villus height and the ratio of villus height:crypt depth in duodenum and ileum (P < 0·05). MOS also increased duodenal sucrase and ileal lactase activity in ETEC-challenged pigs (P < 0·05). MOS decreased the abundance of E. coli, but increased the abundance of Lactobacillus, Bifidobacterium and Bacillus in caecum (P < 0·05). Importantly, MOS not only elevated the expression levels of zonula occludens-1 (ZO-1), claudin-1 and GLUT-2 in duodenum (P < 0·05) but also elevated the expression levels of ZO-1, GLUT-2 and L-type amino acid transporter-1 in ileum (P < 0·05) upon ETEC challenge. These results suggested that MOS can alleviate inflammation and intestinal injury in weaned pigs upon ETEC challenge, which was associated with suppressed secretion of inflammatory cytokines and elevated serum Ig, as well as improved intestinal epithelium functions and microbiota.
The associations between sugar-sweetened beverage (SSB) and artificially sweetened beverage (ASB) consumption and the risk of metabolic syndrome (MetS) remain controversial. A quantitative assessment of dose–response associations has not been reported. This study aims to assess the associations between the risk of MetS and SSB, ASB, and total sweetened beverage (TSB, the combination of SSB and ASB) consumption by reviewing population-based epidemiological studies.
Design:
Meta-analysis.
Setting:
We searched PubMed, Embase and Web of Science databases prior to 4 November 2019, for relevant studies investigating the SSB–MetS and ASB–MetS associations. A random effects model was used to estimate pooled relative risks (RR) and 95 % CI. Dose–response association was assessed using a restricted cubic splines model.
Participants:
We identified seventeen articles (twenty-four studies, including 93 095 participants and 20 749 MetS patients).
Results:
The pooled RR for the risk of MetS were 1·51 (95 % CI 1·34, 1·69), 1·56 (1·32, 1·83) and 1·44 (1·19, 1·75) in high consumption group of TSB, SSB and ASB, respectively; and 1·20 (1·13, 1·28), 1·19 (1·11, 1·28) and 1·31 (1·05, 1·65) per 250 ml/d increase in TSB, SSB and ASB consumption, respectively. Additionally, we found evidence of non-linear, TSB–MetS and SSB–MetS dose–response associations and a linear ASB–MetS dose–response association.
Conclusions:
TSB, SSB and ASB consumption was associated with the risk of MetS. The present findings provide evidence that supports reducing intake of these beverages to lower the TSB-, SSB- and ASB-related risk of MetS.
The novel coronavirus disease 2019 (COVID-19) pandemic has spread to over 213 countries and territories. We sought to describe the clinical features of fatalities in patients with severe COVID-19.
Methods:
We conducted an Internet-based retrospective cohort study through retrieving the clinical information of 100 COVID-19 deaths from nonduplicating incidental reports in Chinese provincial and other governmental websites between January 23 and March 10, 2020.
Results:
Approximately 6 of 10 COVID-19 deaths were males (64.0%). The average age was 70.7 ± 13.5 y, and 84% of patients were elderly (over age 60 y). The mean duration from admission to diagnosis was 2.2 ± 3.8 d (median: 1 d). The mean duration from diagnosis to death was 9.9 ± 7.0 d (median: 9 d). Approximately 3 of 4 cases (76.0%) were complicated by 1 or more chronic diseases, including hypertension (41.0%), diabetes (29.0%) and coronary heart disease (27.0%), respiratory disorders (23.0%), and cerebrovascular disease (12.0%). Fever (46.0%), cough (33.0%), and shortness of breath (9.0%) were the most common first symptoms. Multiple organ failure (67.9%), circulatory failure (20.2%), and respiratory failure (11.9%) are the top 3 direct causes of death.
Conclusions:
COVID-19 deaths are mainly elderly and patients with chronic diseases especially cardiovascular disorders and diabetes. Multiple organ failure is the most common direct cause of death.
Here, we explored the influences of dietary inulin (INU) supplementation on growth performance and intestinal health in a porcine model. Thirty-two male weaned pigs (with an average body weight of 7·10 (sd 0·20) kg) were randomly assigned to four treatments and fed with a basal diet (BD) or BD containing 2·5, 5·0 and 10·0 g/kg INU. After a 21-d trial, pigs were killed for collection of serum and intestinal tissues. We show that INU supplementation had no significant influence on the growth performance in weaned pigs. INU significantly elevated serum insulin-like growth factor-1 concentration but decreased diamine oxidase concentration (P < 0·05). Interestingly, 2·5 and 5·0 g/kg INU supplementation significantly elevated the villus height in jejunum and ileum (P < 0·05). Moreover, 2·5 and 5·0 g/kg INU supplementation also elevated the villus height to crypt depth (V:C) in the duodenum and ileum and improved the distribution and abundance of tight-junction protein zonula occludens-1 in duodenum and ileum epithelium. INU supplementation at 10·0 g/kg significantly elevated the sucrase activity in the ileum mucosa (P < 0·05). INU supplementation decreased the expression level of TNF-α but elevated the expression level of GLUT 2 and divalent metal transporter 1 in the intestinal mucosa (P < 0·05). Moreover, INU increased acetic and butyric acid concentrations in caecum (P < 0·05). Importantly, INU elevated the Lactobacillus population but decreased the Escherichia coli population in the caecum (P < 0·05). These results not only indicate a beneficial effect of INU on growth performance and intestinal barrier functions but also offer potential mechanisms behind the dietary fibre-regulated intestinal health.
The present study aimed to investigate whether arginine (Arg) promotes porcine type I muscle fibres formation via improving mitochondrial biogenesis. In the in vivo study, a total of sixty Duroc × Landrace × Yorkshire weaning piglets with an average body weight of 6·55 (sd 0·36) kg were randomly divided into four treatments and fed with a basal diet or a basal diet supplemented with 0·5, 1·0 and 1·5 % l-Arg, respectively, in a 4-week trial. Results showed that dietary supplementation of 1·0 % Arg significantly enhanced the activity of succinate dehydrogenase, up-regulated the protein expression of myosin heavy chain I (MyHC I) and increased the mRNA levels of MyHC I, troponin I1, C1 and T1 (Tnni1, Tnnc1 and Tnnt1) in longissimus dorsi muscle compared with the control group. In addition, ATPase staining analysis indicated that 1·0 % Arg supplementation significantly increased the number of type I muscle fibres and significantly decreased the number of type II muscle fibres. Furthermore, 1·0 % Arg supplementation significantly up-regulated PPAR-γ coactivator-1α (PGC-1α), sirtuin 1 and cytochrome c (Cytc) protein expressions, increased PGC-1α, nuclear respiratory factor 1 (NRF1), mitochondria transcription factor B1 (TFB1M), Cytc and ATP synthase subunit C1 (ATP5G) mRNA levels and increased mitochondrial DNA content. In the in vitro study, mitochondrial complex I inhibitor rotenone (Rot) was used. We found that Rot annulled Arg-induced type I muscle fibres formation. Together, our results provide for the first time the evidence that Arg promotes porcine type I muscle fibres formation through improvement of mitochondrial biogenesis.
We return to the long-standing question ‘Who owns the assets in a defined benefit pension plan?’ Unlike earlier studies, we condition the market's assessment of implicit property rights on the sponsoring firm's financial health. Valuations of financially strong firms, and those that are strengthening, are more responsive to pension plan funding. For these firms, each extra dollar of net plan assets is valued at between $0.50 and $1.00. In contrast, for weak and weakening firms, valuation effects are statistically indistinguishable from zero. This result is consistent with the higher likelihood that they will renege on their pension obligations.
Malnutrition and acute kidney injury (AKI) are common complications in hospitalised patients, and both increase mortality; however, the relationship between them is unknown. This is a retrospective propensity score matching study enrolling 46 549 inpatients, aimed to investigate the association between Nutritional Risk Screening 2002 (NRS-2002) and AKI and to assess the ability of NRS-2002 and AKI in predicting prognosis. In total, 37 190 (80 %) and 9359 (20 %) patients had NRS-2002 scores <3 and ≥3, respectively. Patients with NRS-2002 scores ≥3 had longer lengths of stay (12·6 (sd 7·8) v. 10·4 (sd 6·2) d, P < 0·05), higher mortality rates (9·6 v. 2·5 %, P < 0·05) and higher incidence of AKI (28 v. 16 %, P < 0·05) than patients with normal nutritional status. The NRS-2002 showed a strong association with AKI, that is, the risk of AKI changed in parallel with the score of the NRS-2002. In short- and long-term survival, patients with a lower NRS-2002 score or who did not have AKI achieved a significantly lower risk of mortality than those with a high NRS-2002 score or AKI. Univariate Cox regression analyses indicated that both the NRS-2002 and AKI were strongly related to long-term survival (AUC 0·79 and 0·71) and that the combination of the two showed better accuracy (AUC 0·80) than the individual variables. In conclusion, malnutrition can increase the risk of AKI and both AKI and malnutrition can worsen the prognosis that the undernourished patients who develop AKI yield far worse prognosis than patients with normal nutritional status.