We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
The increased severity and frequency of bushfires accompanying human-induced global warming have dire implications for biodiversity conservation. Here we investigate the response of a cryptic, cool-climate elapid, the mustard-bellied snake Drysdalia rhodogaster, to the extensive Black Summer fires of 2019/2020 in south-eastern Australia. The species is categorized as Least Concern on the IUCN Red List (last assessed in 2017), but because a large part of its range was burnt during the Black Summer and little was known about its ecology, D. rhodogaster was identified as a priority species for post-fire impact assessment. We evaluated three lines of evidence to assess the impact of the Black Summer fires on D. rhodogaster. Habitat suitability modelling indicated that c. 46% of the predicted range of the species was affected by bushfire. Field surveys conducted 9–36 months post-fire and collation of records from public databases submitted 0–24 months post-fire indicated that D. rhodogaster persisted in burnt landscapes. Fire severity and proportion of the landscape that was burnt within a 1,000-m radius of survey sites were poor predictors of site occupancy by D. rhodogaster. Although conclusions regarding the effects of fire on D. rhodogaster are limited because of the lack of baseline data, it is evident that the species has persisted across the landscape in the wake of extensive bushfires. Our work highlights the need for baseline knowledge on cryptic species even when they are categorized as Least Concern, as otherwise assessments of the impacts of catastrophic events will be constrained.
Gaming disorder has become a global concern and it could have a variety of health and social consequences. The trauma model has been applied to the understanding of different types of addictions as behavioral addictions can sometimes be conceptualized as self-soothing strategies to avoid trauma-related stressors or triggers. However, much less is known about the relationship between trauma exposure and gaming disorder.
Objectives
To inform prevention and intervention strategies and to facilitate further research, we conducted the first scoping review to explore and summarize the literature on the relationship between trauma and gaming disorder.
Methods
A systematic search was conducted on the Web of Science, Scopus and ProQuest. We looked for original studies published in English that included a measure of trauma exposure and a measure of gaming disorder symptoms, as well as quantitative data regarding the relationship between trauma exposure and gaming disorder.
Results
The initial search generated 412 articles, of which 15 met the inclusion criteria. All of them were cross-sectional studies, recruiting participants from both clinical and non-clinical populations. Twelve of them (80%) reported significant correlations between trauma exposure and the severity of gaming disorder symptoms (r = 0.18 to 0.46, p < 0.010). Several potential mediators, including depressive symptoms and dissociative experiences, have been identified. One study found that parental monitoring moderated the relationship between trauma and gaming disorder symptoms. No studies reported the prevalence of trauma or trauma-related symptoms among people with gaming disorder.
Conclusions
There is some evidence supporting the association between trauma and gaming disorder, at small to medium effect sizes. Future studies should investigate the mediators and moderators underlying the relationship between trauma and gaming disorder. The longitudinal relationship between trauma exposure and the development of gaming disorder should be clarified. A trauma-informed approach may be a helpful strategy to alleviate gaming disorder symptoms.
Understanding characteristics of healthcare personnel (HCP) with SARS-CoV-2 infection supports the development and prioritization of interventions to protect this important workforce. We report detailed characteristics of HCP who tested positive for SARS-CoV-2 from April 20, 2020 through December 31, 2021.
Methods:
CDC collaborated with Emerging Infections Program sites in 10 states to interview HCP with SARS-CoV-2 infection (case-HCP) about their demographics, underlying medical conditions, healthcare roles, exposures, personal protective equipment (PPE) use, and COVID-19 vaccination status. We grouped case-HCP by healthcare role. To describe residential social vulnerability, we merged geocoded HCP residential addresses with CDC/ATSDR Social Vulnerability Index (SVI) values at the census tract level. We defined highest and lowest SVI quartiles as high and low social vulnerability, respectively.
Results:
Our analysis included 7,531 case-HCP. Most case-HCP with roles as certified nursing assistant (CNA) (444, 61.3%), medical assistant (252, 65.3%), or home healthcare worker (HHW) (225, 59.5%) reported their race and ethnicity as either non-Hispanic Black or Hispanic. More than one third of HHWs (166, 45.2%), CNAs (283, 41.7%), and medical assistants (138, 37.9%) reported a residential address in the high social vulnerability category. The proportion of case-HCP who reported using recommended PPE at all times when caring for patients with COVID-19 was lowest among HHWs compared with other roles.
Conclusions:
To mitigate SARS-CoV-2 infection risk in healthcare settings, infection prevention, and control interventions should be specific to HCP roles and educational backgrounds. Additional interventions are needed to address high social vulnerability among HHWs, CNAs, and medical assistants.
Population-wide restrictions during the COVID-19 pandemic may create barriers to mental health diagnosis. This study aims to examine changes in the number of incident cases and the incidence rates of mental health diagnoses during the COVID-19 pandemic.
Methods
By using electronic health records from France, Germany, Italy, South Korea and the UK and claims data from the US, this study conducted interrupted time-series analyses to compare the monthly incident cases and the incidence of depressive disorders, anxiety disorders, alcohol misuse or dependence, substance misuse or dependence, bipolar disorders, personality disorders and psychoses diagnoses before (January 2017 to February 2020) and after (April 2020 to the latest available date of each database [up to November 2021]) the introduction of COVID-related restrictions.
Results
A total of 629,712,954 individuals were enrolled across nine databases. Following the introduction of restrictions, an immediate decline was observed in the number of incident cases of all mental health diagnoses in the US (rate ratios (RRs) ranged from 0.005 to 0.677) and in the incidence of all conditions in France, Germany, Italy and the US (RRs ranged from 0.002 to 0.422). In the UK, significant reductions were only observed in common mental illnesses. The number of incident cases and the incidence began to return to or exceed pre-pandemic levels in most countries from mid-2020 through 2021.
Conclusions
Healthcare providers should be prepared to deliver service adaptations to mitigate burdens directly or indirectly caused by delays in the diagnosis and treatment of mental health conditions.
Blood-based biomarkers represent a scalable and accessible approach for the detection and monitoring of Alzheimer’s disease (AD). Plasma phosphorylated tau (p-tau) and neurofilament light (NfL) are validated biomarkers for the detection of tau and neurodegenerative brain changes in AD, respectively. There is now emphasis to expand beyond these markers to detect and provide insight into the pathophysiological processes of AD. To this end, a reactive astrocytic marker, namely plasma glial fibrillary acidic protein (GFAP), has been of interest. Yet, little is known about the relationship between plasma GFAP and AD. Here, we examined the association between plasma GFAP, diagnostic status, and neuropsychological test performance. Diagnostic accuracy of plasma GFAP was compared with plasma measures of p-tau181 and NfL.
Participants and Methods:
This sample included 567 participants from the Boston University (BU) Alzheimer’s Disease Research Center (ADRC) Longitudinal Clinical Core Registry, including individuals with normal cognition (n=234), mild cognitive impairment (MCI) (n=180), and AD dementia (n=153). The sample included all participants who had a blood draw. Participants completed a comprehensive neuropsychological battery (sample sizes across tests varied due to missingness). Diagnoses were adjudicated during multidisciplinary diagnostic consensus conferences. Plasma samples were analyzed using the Simoa platform. Binary logistic regression analyses tested the association between GFAP levels and diagnostic status (i.e., cognitively impaired due to AD versus unimpaired), controlling for age, sex, race, education, and APOE e4 status. Area under the curve (AUC) statistics from receiver operating characteristics (ROC) using predicted probabilities from binary logistic regression examined the ability of plasma GFAP to discriminate diagnostic groups compared with plasma p-tau181 and NfL. Linear regression models tested the association between plasma GFAP and neuropsychological test performance, accounting for the above covariates.
Results:
The mean (SD) age of the sample was 74.34 (7.54), 319 (56.3%) were female, 75 (13.2%) were Black, and 223 (39.3%) were APOE e4 carriers. Higher GFAP concentrations were associated with increased odds for having cognitive impairment (GFAP z-score transformed: OR=2.233, 95% CI [1.609, 3.099], p<0.001; non-z-transformed: OR=1.004, 95% CI [1.002, 1.006], p<0.001). ROC analyses, comprising of GFAP and the above covariates, showed plasma GFAP discriminated the cognitively impaired from unimpaired (AUC=0.75) and was similar, but slightly superior, to plasma p-tau181 (AUC=0.74) and plasma NfL (AUC=0.74). A joint panel of the plasma markers had greatest discrimination accuracy (AUC=0.76). Linear regression analyses showed that higher GFAP levels were associated with worse performance on neuropsychological tests assessing global cognition, attention, executive functioning, episodic memory, and language abilities (ps<0.001) as well as higher CDR Sum of Boxes (p<0.001).
Conclusions:
Higher plasma GFAP levels differentiated participants with cognitive impairment from those with normal cognition and were associated with worse performance on all neuropsychological tests assessed. GFAP had similar accuracy in detecting those with cognitive impairment compared with p-tau181 and NfL, however, a panel of all three biomarkers was optimal. These results support the utility of plasma GFAP in AD detection and suggest the pathological processes it represents might play an integral role in the pathogenesis of AD.
Blood-based biomarkers offer a more feasible alternative to Alzheimer’s disease (AD) detection, management, and study of disease mechanisms than current in vivo measures. Given their novelty, these plasma biomarkers must be assessed against postmortem neuropathological outcomes for validation. Research has shown utility in plasma markers of the proposed AT(N) framework, however recent studies have stressed the importance of expanding this framework to include other pathways. There is promising data supporting the usefulness of plasma glial fibrillary acidic protein (GFAP) in AD, but GFAP-to-autopsy studies are limited. Here, we tested the association between plasma GFAP and AD-related neuropathological outcomes in participants from the Boston University (BU) Alzheimer’s Disease Research Center (ADRC).
Participants and Methods:
This sample included 45 participants from the BU ADRC who had a plasma sample within 5 years of death and donated their brain for neuropathological examination. Most recent plasma samples were analyzed using the Simoa platform. Neuropathological examinations followed the National Alzheimer’s Coordinating Center procedures and diagnostic criteria. The NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Measures of GFAP were log-transformed. Binary logistic regression analyses tested the association between GFAP and autopsy-confirmed AD status, as well as with semi-quantitative ratings of regional atrophy (none/mild versus moderate/severe) using binary logistic regression. Ordinal logistic regression analyses tested the association between plasma GFAP and Braak stage and CERAD neuritic plaque score. Area under the curve (AUC) statistics from receiver operating characteristics (ROC) using predicted probabilities from binary logistic regression examined the ability of plasma GFAP to discriminate autopsy-confirmed AD status. All analyses controlled for sex, age at death, years between last blood draw and death, and APOE e4 status.
Results:
Of the 45 brain donors, 29 (64.4%) had autopsy-confirmed AD. The mean (SD) age of the sample at the time of blood draw was 80.76 (8.58) and there were 2.80 (1.16) years between the last blood draw and death. The sample included 20 (44.4%) females, 41 (91.1%) were White, and 20 (44.4%) were APOE e4 carriers. Higher GFAP concentrations were associated with increased odds for having autopsy-confirmed AD (OR=14.12, 95% CI [2.00, 99.88], p=0.008). ROC analysis showed plasma GFAP accurately discriminated those with and without autopsy-confirmed AD on its own (AUC=0.75) and strengthened as the above covariates were added to the model (AUC=0.81). Increases in GFAP levels corresponded to increases in Braak stage (OR=2.39, 95% CI [0.71-4.07], p=0.005), but not CERAD ratings (OR=1.24, 95% CI [0.004, 2.49], p=0.051). Higher GFAP levels were associated with greater temporal lobe atrophy (OR=10.27, 95% CI [1.53,69.15], p=0.017), but this was not observed with any other regions.
Conclusions:
The current results show that antemortem plasma GFAP is associated with non-specific AD neuropathological changes at autopsy. Plasma GFAP could be a useful and practical biomarker for assisting in the detection of AD-related changes, as well as for study of disease mechanisms.
Meta-analyses demonstrate that the quality of early attachment is modestly associated with peer social competence (r = .19) and externalizing behavior (r = −.15), but weakly associated with internalizing symptoms (r = −.07) across early development (Groh et al., Child Development Perspectives, 11(1), 70–76, 2017). Nonetheless, these reviews suffer from limitations that undermine confidence in reported estimates, including evidence for publication bias and the lack of comprehensive assessments of outcome measures from longitudinal studies in the literature. Moreover, theoretical claims regarding the specificity of the predictive significance of early attachment variation for socioemotional versus academic outcomes had not been evaluated when the analyses for this report were registered (but see Dagan et al., Child Development, 1–20, 2023; Deneault et al., Developmental Review, 70, 101093, 2023). To address these limitations, we conducted a set of registered analyses to evaluate the predictive validity of infant attachment in two landmark studies of the Strange Situation: the Minnesota Longitudinal Study of Risk and Adaptation (MLSRA) and the NICHD Study of Early Child Care and Youth Development (SECCYD). Across-time composite assessments reflecting teacher report, mother report, and self-reports of each outcome measure were created. Bivariate associations between infant attachment security and socioemotional outcomes in the MLSRA were comparable to, or slightly weaker than, those reported in the recent meta-analyses, whereas those in the SECCYD were weaker for these outcomes. Controlling for four demographic covariates, partial correlation coefficients between infant attachment and all socioemotional outcomes were r ≤ .10 to .15 in both samples. Compositing Strange Situations at ages 12 and 18 months did not substantively alter the predictive validity of the measure in the MLSRA, though a composite measure of three different early attachment measures in the SECCYD did increase predictive validity coefficients. Associations between infant attachment security and academic skills were unexpectedly comparable to (SECCYD) or larger than (MLSRA) those observed with respect to socioemotional outcomes.
A fleet of aircraft can be seen as a set of degrading systems that undergo variable loads as they fly missions and require maintenance throughout their lifetime. Optimal fleet management aims to maximise fleet availability while minimising overall maintenance costs. To achieve this goal, individual aircraft, with variable age and degradation paths, need to operate cooperatively to maintain high fleet availability while avoiding mechanical failure by scheduling preventive maintenance actions. In recent years, reinforcement learning (RL) has emerged as an effective method to optimise complex sequential decision-making problems. In this paper, an RL framework to optimise the operation and maintenance of a fleet of aircraft is developed. Three cases studies, with varying number of aircraft in the fleet, are used to demonstrate the ability of the RL policies to outperform traditional operation/maintenance strategies. As more aircraft are added to the fleet, the combinatorial explosion of the number of possible actions is identified as a main computational limitation. We conclude that the RL policy has potential to support fleet management operators and call for greater research on the application of multi-agent RL for fleet availability optimisation.
Excessive and persistent fear of clusters of holes, also known as trypophobia, has been suggested to reflect cortical hyperexcitability and may be associated with mental health risks. No study, however, has yet examined these associations in representative epidemiological samples.
Aims
To examine the prevalence of trypophobia in a population-representative youth sample, its association with mental health and functioning, and its interaction with external stress.
Method
A total of 2065 young people were consecutively recruited from a household-based epidemiological youth mental health study in Hong Kong. Trypophobia, symptoms of anxiety, depression and stress, and exposure to personal stressors were assessed. Logistic regression was used to assess the relationships between trypophobia and mental health. Potential additive and interaction effects of trypophobia and high stress exposure on mental health were also tested.
Results
The prevalence of trypophobia was 17.6%. Trypophobia was significantly associated with severe symptoms of anxiety (odds ratio (OR) = 1.83, 95% CI = 1.32–2.53), depression (OR = 1.78, 95% CI = 1.24–2.56) and stress (OR = 1.68, 95% CI = 1.11–2.53), even when accounting for sociodemographic factors, personal and family psychiatric history, resilience and stress exposure. Dose–response relationships were observed, and trypophobia significantly potentiated the effects of stress exposure on symptom outcomes, particularly for depressive symptoms. Those with trypophobia also showed significantly poorer functioning across domains and poorer health-related quality of life.
Conclusions
Screening for trypophobia in young people may facilitate early risk detection and intervention, particularly among those with recent stress exposure. Nevertheless, the generally small effect sizes suggest that other factors have more prominent roles in determining recent mental health outcomes in population-based samples; these should be explored in future work.
The putative host galaxy of FRB 20171020A was first identified as ESO 601-G036 in 2018, but as no repeat bursts have been detected, direct confirmation of the host remains elusive. In light of recent developments in the field, we re-examine this host and determine a new association confidence level of 98%. At 37 Mpc, this makes ESO 601-G036 the third closest FRB host galaxy to be identified to date and the closest to host an apparently non-repeating FRB (with an estimated repetition rate limit of $<$$0.011$ bursts per day above $10^{39}$ erg). Due to its close distance, we are able to perform detailed multi-wavelength analysis on the ESO 601-G036 system. Follow-up observations confirm ESO 601-G036 to be a typical star-forming galaxy with H i and stellar masses of $\log_{10}\!(M_{\rm{H\,{\small I}}} / M_\odot) \sim 9.2$ and $\log_{10}\!(M_\star / M_\odot) = 8.64^{+0.03}_{-0.15}$, and a star formation rate of $\text{SFR} = 0.09 \pm 0.01\,{\rm M}_\odot\,\text{yr}^{-1}$. We detect, for the first time, a diffuse gaseous tail ($\log_{10}\!(M_{\rm{H\,{\small I}}} / M_\odot) \sim 8.3$) extending to the south-west that suggests recent interactions, likely with the confirmed nearby companion ESO 601-G037. ESO 601-G037 is a stellar shred located to the south of ESO 601-G036 that has an arc-like morphology, is about an order of magnitude less massive, and has a lower gas metallicity that is indicative of a younger stellar population. The properties of the ESO 601-G036 system indicate an ongoing minor merger event, which is affecting the overall gaseous component of the system and the stars within ESO 601-G037. Such activity is consistent with current FRB progenitor models involving magnetars and the signs of recent interactions in other nearby FRB host galaxies.
We investigate the diversity in the sizes and average surface densities of the neutral atomic hydrogen (H i) gas discs in $\sim$280 nearby galaxies detected by the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). We combine the uniformly observed, interferometric H i data from pilot observations of the Hydra cluster and NGC 4636 group fields with photometry measured from ultraviolet, optical, and near-infrared imaging surveys to investigate the interplay between stellar structure, star formation, and H i structural parameters. We quantify the H i structure by the size of the H i relative to the optical disc and the average H i surface density measured using effective and isodensity radii. For galaxies resolved by $>$$1.3$ beams, we find that galaxies with higher stellar masses and stellar surface densities tend to have less extended H i discs and lower H i surface densities: the isodensity H i structural parameters show a weak negative dependence on stellar mass and stellar mass surface density. These trends strengthen when we limit our sample to galaxies resolved by $>$2 beams. We find that galaxies with higher H i surface densities and more extended H i discs tend to be more star forming: the isodensity H i structural parameters have stronger correlations with star formation. Normalising the H i disc size by the optical effective radius (instead of the isophotal radius) produces positive correlations with stellar masses and stellar surface densities and removes the correlations with star formation. This is due to the effective and isodensity H i radii increasing with mass at similar rates while, in the optical, the effective radius increases slower than the isophotal radius. Our results are in qualitative agreement with previous studies and demonstrate that with WALLABY we can begin to bridge the gap between small galaxy samples with high spatial resolution H i data and large, statistical studies using spatially unresolved, single-dish data.
Childhood adversities (CAs) predict heightened risks of posttraumatic stress disorder (PTSD) and major depressive episode (MDE) among people exposed to adult traumatic events. Identifying which CAs put individuals at greatest risk for these adverse posttraumatic neuropsychiatric sequelae (APNS) is important for targeting prevention interventions.
Methods
Data came from n = 999 patients ages 18–75 presenting to 29 U.S. emergency departments after a motor vehicle collision (MVC) and followed for 3 months, the amount of time traditionally used to define chronic PTSD, in the Advancing Understanding of Recovery After Trauma (AURORA) study. Six CA types were self-reported at baseline: physical abuse, sexual abuse, emotional abuse, physical neglect, emotional neglect and bullying. Both dichotomous measures of ever experiencing each CA type and numeric measures of exposure frequency were included in the analysis. Risk ratios (RRs) of these CA measures as well as complex interactions among these measures were examined as predictors of APNS 3 months post-MVC. APNS was defined as meeting self-reported criteria for either PTSD based on the PTSD Checklist for DSM-5 and/or MDE based on the PROMIS Depression Short-Form 8b. We controlled for pre-MVC lifetime histories of PTSD and MDE. We also examined mediating effects through peritraumatic symptoms assessed in the emergency department and PTSD and MDE assessed in 2-week and 8-week follow-up surveys. Analyses were carried out with robust Poisson regression models.
Results
Most participants (90.9%) reported at least rarely having experienced some CA. Ever experiencing each CA other than emotional neglect was univariably associated with 3-month APNS (RRs = 1.31–1.60). Each CA frequency was also univariably associated with 3-month APNS (RRs = 1.65–2.45). In multivariable models, joint associations of CAs with 3-month APNS were additive, with frequency of emotional abuse (RR = 2.03; 95% CI = 1.43–2.87) and bullying (RR = 1.44; 95% CI = 0.99–2.10) being the strongest predictors. Control variable analyses found that these associations were largely explained by pre-MVC histories of PTSD and MDE.
Conclusions
Although individuals who experience frequent emotional abuse and bullying in childhood have a heightened risk of experiencing APNS after an adult MVC, these associations are largely mediated by prior histories of PTSD and MDE.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and $S/N$ in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60\,\mathrm{deg}^{2}$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of $z \lesssim 0.08$. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of $z \approx 0.014$ is relatively low compared to the full WALLABY survey. The median galaxy H i mass is $2.3 \times 10^{9}\,{\rm M}_{{\odot}}$. The target noise level of $1.6\,\mathrm{mJy}$ per 30′′ beam and $18.5\,\mathrm{kHz}$ channel translates into a $5 \sigma$ H i mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$ across 50 spectral channels (${\approx} 200\,\mathrm{km \, s}^{-1}$) and a $5 \sigma$ H i column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$ across 5 channels (${\approx} 20\,\mathrm{km \, s}^{-1}$) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
While prior literature has largely focused on marriage effects during young adulthood, it is less clear whether these effects are as strong in middle adulthood. Thus, we investigated age differences in marriage effects on problem-drinking reduction. We employed parallel analyses with two independent samples (analytic-sample Ns of 577 and 441, respectively). Both are high-risk samples by design, with about 50% of participants having a parent with lifetime alcohol use disorder. Both samples have been assessed longitudinally from early young adulthood to the mid-to-late 30s. Separate parallel analyses with these two samples allowed evaluation of the reproducibility of results. Growth models of problem drinking tested marriage as a time-varying predictor and thereby assessed age differences in marriage effects. For both samples, results consistently showed marriage effects to be strongest in early young adulthood and to decrease somewhat monotonically thereafter with age, reaching very small (and nonsignificant) magnitudes by the 30s. Results may reflect that role transitions like marriage have more impact on problem drinking in earlier versus later adulthood, thereby highlighting the importance of life span developmental research for understanding problem-drinking desistance. Our findings can inform intervention strategies aimed at reducing problem drinking by jumpstarting or amplifying natural processes of adult role adaptation.
Patients with bipolar disorder (BPD) are prone to engage in risk-taking behaviours and self-harm, contributing to higher risk of traumatic injuries requiring medical attention at the emergency room (ER).We hypothesize that pharmacological treatment of BPD could reduce the risk of traumatic injuries by alleviating symptoms but evidence remains unclear. This study aimed to examine the association between pharmacological treatment and the risk of ER admissions due to traumatic injuries.
Methods
Individuals with BPD who received mood stabilizers and/or antipsychotics were identified using a population-based electronic healthcare records database in Hong Kong (2001–2019). A self-controlled case series design was applied to control for time-invariant confounders.
Results
A total of 5040 out of 14 021 adults with BPD who received pharmacological treatment and had incident ER admissions due to traumatic injuries from 2001 to 2019 were included. An increased risk of traumatic injuries was found 30 days before treatment [incidence rate ratio (IRR) 4.44 (3.71–5.31), p < 0.0001]. After treatment initiation, the risk remained increased with a smaller magnitude, before returning to baseline [IRR 0.97 (0.88–1.06), p = 0.50] during maintenance treatment. The direct comparison of the risk during treatment to that before and after treatment showed a significant decrease. After treatment cessation, the risk was increased [IRR 1.34 (1.09–1.66), p = 0.006].
Conclusions
This study supports the hypothesis that pharmacological treatment of BPD was associated with a lower risk of ER admissions due to traumatic injuries but an increased risk after treatment cessation. Close monitoring of symptoms relapse is recommended to clinicians and patients if treatment cessation is warranted.
Whole-genome sequencing (WGS) has traditionally been used in infection prevention to confirm or refute the presence of an outbreak after it has occurred. Due to decreasing costs of WGS, an increasing number of institutions have been utilizing WGS-based surveillance. Additionally, machine learning or statistical modeling to supplement infection prevention practice have also been used. We systematically reviewed the use of WGS surveillance and machine learning to detect and investigate outbreaks in healthcare settings.
Methods:
We performed a PubMed search using separate terms for WGS surveillance and/or machine-learning technologies for infection prevention through March 15, 2021.
Results:
Of 767 studies returned using the WGS search terms, 42 articles were included for review. Only 2 studies (4.8%) were performed in real time, and 39 (92.9%) studied only 1 pathogen. Nearly all studies (n = 41, 97.6%) found genetic relatedness between some isolates collected. Across all studies, 525 outbreaks were detected among 2,837 related isolates (average, 5.4 isolates per outbreak). Also, 35 studies (83.3%) only utilized geotemporal clustering to identify outbreak transmission routes. Of 21 studies identified using the machine-learning search terms, 4 were included for review. In each study, machine learning aided outbreak investigations by complementing methods to gather epidemiologic data and automating identification of transmission pathways.
Conclusions:
WGS surveillance is an emerging method that can enhance outbreak detection. Machine learning has the potential to identify novel routes of pathogen transmission. Broader incorporation of WGS surveillance into infection prevention practice has the potential to transform the detection and control of healthcare outbreaks.
Young people are most vulnerable to suicidal behaviours but least likely to seek help. A more elaborate study of the intrinsic and extrinsic correlates of suicidal ideation and behaviours particularly amid ongoing population-level stressors and the identification of less stigmatising markers in representative youth populations is essential.
Methods
Participants (n = 2540, aged 15–25) were consecutively recruited from an ongoing large-scale household-based epidemiological youth mental health study in Hong Kong between September 2019 and 2021. Lifetime and 12-month prevalence of suicidal ideation, plan, and attempt were assessed, alongside suicide-related rumination, hopelessness and neuroticism, personal and population-level stressors, family functioning, cognitive ability, lifetime non-suicidal self-harm, 12-month major depressive disorder (MDD), and alcohol use.
Results
The 12-month prevalence of suicidal ideation, ideation-only (no plan or attempt), plan, and attempt was 20.0, 15.4, 4.6, and 1.3%, respectively. Importantly, multivariable logistic regression findings revealed that suicide-related rumination was the only factor associated with all four suicidal outcomes (all p < 0.01). Among those with suicidal ideation (two-stage approach), intrinsic factors, including suicide-related rumination, poorer cognitive ability, and 12-month MDE, were specifically associated with suicide plan, while extrinsic factors, including coronavirus disease 2019 (COVID-19) stressors, poorer family functioning, and personal life stressors, as well as non-suicidal self-harm, were specifically associated with suicide attempt.
Conclusions
Suicide-related rumination, population-level COVID-19 stressors, and poorer family functioning may be important less-stigmatising markers for youth suicidal risks. The respective roles played by not only intrinsic but also extrinsic factors in suicide plan and attempt using a two-stage approach should be considered in future preventative intervention work.