We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
The impact of alternative aviation jet fuels and their properties on lean blowout (LBO) limits has recently raised several questions in the jet fuel area. There is a need for a detailed investigation of the impact of fuel properties on the LBO limit involving actual engine hardware. This study investigates the impact of a range of alternative aviation jet fuels with notable differences in physical and chemical properties and derived cetane number (DCN) on the LBO limit and their effects on key performance indicators. LBO performance results for ten different alternative fuels using a Rolls-Royce single-can Tay combustor are presented in this study. The study also assesses impact of different equivalence ratios and flow rates on LBO, with the aim of determining the impact of a certain range of operating conditions. The results are further analysed to determine the influence of fuel chemical and physical properties on the LBO limit. Finally, based on results in the above experiments, individual fuel properties are adjusted for subsequent experimental analysis of blended fuels. With this approach, 25 additional fuel blends are evaluated and presented, with an emphasis on varying the DCN. This study provides effective data and results to facilitate future fuel optimisation and reduce the risk of a negative performance of new fuels in gas turbines.
We describe the scientific goals and survey design of the First Large Absorption Survey in H i (FLASH), a wide field survey for 21-cm line absorption in neutral atomic hydrogen (H i) at intermediate cosmological redshifts. FLASH will be carried out with the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope and is planned to cover the sky south of $\delta \approx +40\,\deg$ at frequencies between 711.5 and 999.5 MHz. At redshifts between $z = 0.4$ and $1.0$ (look-back times of 4 – 8 Gyr), the H i content of the Universe has been poorly explored due to the difficulty of carrying out radio surveys for faint 21-cm line emission and, at ultra-violet wavelengths, space-borne searches for Damped Lyman-$\alpha$ absorption in quasar spectra. The ASKAP wide field of view and large spectral bandwidth, in combination with a radio-quiet site, will enable a search for absorption lines in the radio spectra of bright continuum sources over 80% of the sky. This survey is expected to detect at least several hundred intervening 21-cm absorbers and will produce an H i-absorption-selected catalogue of galaxies rich in cool, star-forming gas, some of which may be concealed from optical surveys. Likewise, at least several hundred associated 21-cm absorbers are expected to be detected within the host galaxies of radio sources at $0.4 < z < 1.0$, providing valuable kinematical information for models of gas accretion and jet-driven feedback in radio-loud active galactic nuclei. FLASH will also detect OH 18-cm absorbers in diffuse molecular gas, megamaser OH emission, radio recombination lines, and stacked H i emission.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination $<\!{+}30^{\circ}$) with an angular resolution of ${\approx}2$ arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median $z \approx 0.064$) radio sources with $S_{200\,\mathrm{MHz}} > 55$ mJy across an area of ${\approx}16\,700\,\mathrm{deg}^{2}$. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and ${\sim}1$ GHz. For the AGN, the median spectral index between 200 MHz and ${\sim}1$ GHz, $\alpha_{\mathrm{high}}$, is $-0.600 \pm 0.010$ (where $S \propto \nu^{\alpha}$) and the median spectral index within the GLEAM band, $\alpha_{\mathrm{low}}$, is $-0.704 \pm 0.011$. For the SF galaxies, the median value of $\alpha_{\mathrm{high}}$ is $-0.650 \pm 0.010$ and the median value of $\alpha_{\mathrm{low}}$ is $-0.596 \pm 0.015$. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies ($\alpha_{\mathrm{low}} < -1.2$). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Diet has direct and indirect effects on health through inflammation and the gut microbiome. We investigated total dietary inflammatory potential via the literature-derived index (Dietary Inflammatory Index (DII®)) with gut microbiota diversity, composition and function. In cancer-free patient volunteers initially approached at colonoscopy and healthy volunteers recruited from the medical centre community, we assessed 16S ribosomal DNA in all subjects who provided dietary assessments and stool samples (n 101) and the gut metagenome in a subset of patients with residual fasting blood samples (n 34). Associations of energy-adjusted DII scores with microbial diversity and composition were examined using linear regression, permutational multivariate ANOVA and linear discriminant analysis. Spearman correlation was used to evaluate associations of species and pathways with DII and circulating inflammatory markers. Across DII levels, α- and β-diversity did not significantly differ; however, Ruminococcus torques, Eubacterium nodatum, Acidaminococcus intestini and Clostridium leptum were more abundant in the most pro-inflammatory diet group, while Akkermansia muciniphila was enriched in the most anti-inflammatory diet group. With adjustment for age and BMI, R. torques, E. nodatum and A. intestini remained significantly associated with a more pro-inflammatory diet. In the metagenomic and fasting blood subset, A. intestini was correlated with circulating plasminogen activator inhibitor-1, a pro-inflammatory marker (rho = 0·40), but no associations remained significant upon correction for multiple testing. An index reflecting overall inflammatory potential of the diet was associated with specific microbes, but not overall diversity of the gut microbiome in our study. Findings from this preliminary study warrant further research in larger samples and prospective cohorts.
We have detected 27 new supernova remnants (SNRs) using a new data release of the GLEAM survey from the Murchison Widefield Array telescope, including the lowest surface brightness SNR ever detected, G 0.1 – 9.7. Our method uses spectral fitting to the radio continuum to derive spectral indices for 26/27 candidates, and our low-frequency observations probe a steeper spectrum population than previously discovered. None of the candidates have coincident WISE mid-IR emission, further showing that the emission is non-thermal. Using pulsar associations we derive physical properties for six candidate SNRs, finding G 0.1 – 9.7 may be younger than 10 kyr. Sixty per cent of the candidates subtend areas larger than 0.2 deg2 on the sky, compared to < 25% of previously detected SNRs. We also make the first detection of two SNRs in the Galactic longitude range 220°–240°.
This work makes available a further $2\,860~\text{deg}^2$ of the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey, covering half of the accessible galactic plane, across 20 frequency bands sampling 72–231 MHz, with resolution $4\,\text{arcmin}-2\,\text{arcmin}$. Unlike previous GLEAM data releases, we used multi-scale CLEAN to better deconvolve large-scale galactic structure. For the galactic longitude ranges $345^\circ < l < 67^\circ$, $180^\circ < l < 240^\circ$, we provide a compact source catalogue of 22 037 components selected from a 60-MHz bandwidth image centred at 200 MHz, with RMS noise $\approx10-20\,\text{mJy}\,\text{beam}^{-1}$ and position accuracy better than 2 arcsec. The catalogue has a completeness of 50% at ${\approx}120\,\text{mJy}$, and a reliability of 99.86%. It covers galactic latitudes $1^\circ\leq|b|\leq10^\circ$ towards the galactic centre and $|b|\leq10^\circ$ for other regions, and is available from Vizier; images covering $|b|\leq10^\circ$ for all longitudes are made available on the GLEAM Virtual Observatory (VO).server and SkyView.
We examined the latest data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey covering 345° < l < 60° and 180° < l < 240°, using these data and that of the Widefield Infrared Survey Explorer to follow up proposed candidate Supernova Remnant (SNR) from other sources. Of the 101 candidates proposed in the region, we are able to definitively confirm ten as SNRs, tentatively confirm two as SNRs, and reclassify five as H ii regions. A further two are detectable in our images but difficult to classify; the remaining 82 are undetectable in these data. We also investigated the 18 unclassified Multi-Array Galactic Plane Imaging Survey (MAGPIS) candidate SNRs, newly confirming three as SNRs, reclassifying two as H ii regions, and exploring the unusual spectra and morphology of two others.
We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded bispectrum estimators are applied to 21 h of high-band (167–197 MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21-cm bispectrum may be accessible in less time than the 21-cm power spectrum for some wave modes, with detections in hundreds of hours.
Two-dimensional particle-in-cell (PIC) simulations have been used to investigate the interaction between a laser pulse and a foil exposed to an external strong longitudinal magnetic field. Compared with that in the absence of the external magnetic field, the divergence of proton with the magnetic field in radiation pressure acceleration (RPA) regimes has improved remarkably due to the restriction of the electron transverse expansion. During the RPA process, the foil develops into a typical bubble-like shape resulting from the combined action of transversal ponderomotive force and instabilities. However, the foil prefers to be in a cone-like shape by using the magnetic field. The dependence of proton divergence on the strength of magnetic field has been studied, and an optimal magnetic field of nearly 60 kT is achieved in these simulations.
Streamwise velocity and wall-shear stress are acquired simultaneously with a hot-wire and an array of azimuthal/spanwise-spaced skin friction sensors in large-scale pipe and boundary layer flow facilities at high Reynolds numbers. These allow for a correlation analysis on a per-scale basis between the velocity and reference skin friction signals to reveal which velocity-based turbulent motions are stochastically coherent with turbulent skin friction. In the logarithmic region, the wall-attached structures in both the pipe and boundary layers show evidence of self-similarity, and the range of scales over which the self-similarity is observed decreases with an increasing azimuthal/spanwise offset between the velocity and the reference skin friction signals. The present empirical observations support the existence of a self-similar range of wall-attached turbulence, which in turn are used to extend the model of Baars et al. (J. Fluid Mech., vol. 823, p. R2) to include the azimuthal/spanwise trends. Furthermore, the region where the self-similarity is observed correspond with the wall height where the mean momentum equation formally admits a self-similar invariant form, and simultaneously where the mean and variance profiles of the streamwise velocity exhibit logarithmic dependence. The experimental observations suggest that the self-similar wall-attached structures follow an aspect ratio of $7:1:1$ in the streamwise, spanwise and wall-normal directions, respectively.
This study presents findings from a first-of-its-kind measurement campaign that includes simultaneous measurements of the full velocity and vorticity vectors in both pipe and boundary layer flows under matched spatial resolution and Reynolds number conditions. Comparison of canonical turbulent flows offers insight into the role(s) played by features that are unique to one or the other. Pipe and zero pressure gradient boundary layer flows are often compared with the goal of elucidating the roles of geometry and a free boundary condition on turbulent wall flows. Prior experimental efforts towards this end have focused primarily on the streamwise component of velocity, while direct numerical simulations are at relatively low Reynolds numbers. In contrast, this study presents experimental measurements of all three components of both velocity and vorticity for friction Reynolds numbers $Re_{\unicode[STIX]{x1D70F}}$ ranging from 5000 to 10 000. Differences in the two transverse Reynolds normal stresses are shown to exist throughout the log layer and wake layer at Reynolds numbers that exceed those of existing numerical data sets. The turbulence enstrophy profiles are also shown to exhibit differences spanning from the outer edge of the log layer to the outer flow boundary. Skewness and kurtosis profiles of the velocity and vorticity components imply the existence of a ‘quiescent core’ in pipe flow, as described by Kwon et al. (J. Fluid Mech., vol. 751, 2014, pp. 228–254) for channel flow at lower $Re_{\unicode[STIX]{x1D70F}}$, and characterize the extent of its influence in the pipe. Observed differences between statistical profiles of velocity and vorticity are then discussed in the context of a structural difference between free-stream intermittency in the boundary layer and ‘quiescent core’ intermittency in the pipe that is detectable to wall distances as small as 5 % of the layer thickness.
Starch digestion in the small intestines of the dairy cow is low, to a large extent, due to a shortage of syntheses of α-amylase. One strategy to improve the situation is to enhance the synthesis of α-amylase. The mammalian target of rapamycin (mTOR) signalling pathway, which acts as a central regulator of protein synthesis, can be activated by leucine. Our objectives were to investigate the effects of leucine on the mTOR signalling pathway and to define the associations between these signalling activities and the synthesis of pancreatic enzymes using an in vitro model of cultured Holstein dairy calf pancreatic tissue. The pancreatic tissue was incubated in culture medium containing l-leucine for 3 h, and samples were collected hourly, with the control being included but not containing l-leucine. The leucine supplementation increased α-amylase and trypsin activities and the messenger RNA expression of their coding genes (P <0.05), and it enhanced the mTOR synthesis and the phosphorylation of mTOR, ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1 (P <0.05). In addition, rapamycin inhibited the mTOR signal pathway factors during leucine treatment. In sum, the leucine regulates α-amylase and trypsin synthesis in dairy calves through the regulation of the mTOR signal pathways.
The bird cherry-oat aphid Rhopalosiphum padi (L.) is one of the most important wheat pests with polyphagia and autumn migrants. And, chemosensory genes were thought to play a key role in insect searching their hosts, food and mate. However, a systematic identification of the chemosensory genes in this pest has not been reported. Thus, in this study, we identified 14 odorant-binding proteins, nine chemosensory proteins, one sensory neuron membrane protein, 15 odorant receptors, 19 gustatory receptors and 16 ionotropic receptors from R. padi transcriptomes with a significantly similarity (E-value < 10−5) to known chemosensory genes in Acyrthosiphon pisum and Aphis gossypii. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) was employed to determine the expression profiles of obtained genes. Among these obtained genes, we selected 23 chemosensory genes to analyze their expression patterns in different tissues, wing morphs and host plants. We found that except RpOBP1, RpOBP3, RpOBP4 and RpOBP5, the rest of the selected genes were highly expressed in the head with antennae compared with body without head and antennae. Besides that, the stimulation and depression of chemosensory genes by plant switch indicated that chemosensory genes might be involved in the plant suitability assessment. These results not only provide insights for the potential roles of chemosensory genes in plant search and perception of R. padi but also provide initial background information for the further research on the molecular mechanism of the polyphagia and autumn migrants of it. Furthermore, these chemosensory genes are also the candidate targets for pest management control in future.
The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope’s primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10–20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA’s primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200–231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.
The current generation of experiments aiming to detect the neutral hydrogen signal from the Epoch of Reionisation (EoR) is likely to be limited by systematic effects associated with removing foreground sources from target fields. In this paper, we develop a model for the compact foreground sources in one of the target fields of the MWA’s EoR key science experiment: the ‘EoR1’ field. The model is based on both the MWA’s GLEAM survey and GMRT 150 MHz data from the TGSS survey, the latter providing higher angular resolution and better astrometric accuracy for compact sources than is available from the MWA alone. The model contains 5 049 sources, some of which have complicated morphology in MWA data, Fornax A being the most complex. The higher resolution data show that 13% of sources that appear point-like to the MWA have complicated morphology such as double and quad structure, with a typical separation of 33 arcsec. We derive an analytic expression for the error introduced into the EoR two-dimensional power spectrum due to peeling close double sources as single point sources and show that for the measured source properties, the error in the power spectrum is confined to high k⊥ modes that do not affect the overall result for the large-scale cosmological signal of interest. The brightest 10 mis-modelled sources in the field contribute 90% of the power bias in the data, suggesting that it is most critical to improve the models of the brightest sources. With this hybrid model, we reprocess data from the EoR1 field and show a maximum of 8% improved calibration accuracy and a factor of two reduction in residual power in k-space from peeling these sources. Implications for future EoR experiments including the SKA are discussed in relation to the improvements obtained.
We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array telescope. We searched the GaLactic and Extragalactic All-sky Murchison Widefield Array survey images for 200-MHz continuum radio emission at the position of all pulsars in the Australia Telescope National Facility (ATNF) pulsar catalogue. For the 60 confirmed detections, we have measured flux densities in 20 × 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the Murchison Widefield Array flux densities are in good agreement.
Worldwide 350 million people suffer from major depression, with the majority of cases occurring in low- and middle-income countries. We examined the patterns, correlates and care-seeking behaviour of adults suffering from major depressive episode (MDE) in China.
Method
A nationwide study recruited 512 891 adults aged 30–79 years from 10 provinces across China during 2004–2008. The 12-month prevalence of MDE was assessed by the Modified Composite International Diagnostic Interview-short form. Logistic regression yielded adjusted odds ratios (ORs) of MDE associated with socio-economic, lifestyle and health-related factors and major stressful life events.
Results
Overall, 0.7% of participants had MDE and a further 2.4% had major depressive symptoms. Stressful life events were strongly associated with MDE [adjusted OR 14.7, 95% confidence interval (CI) 13.7–15.7], with a dose–response relationship with the number of such events experienced. Family conflict had the highest OR for MDE (18.9, 95% CI 16.8–21.2) among the 10 stressful life events. The risk of MDE was also positively associated with rural residency (OR 1.5, 95% CI 1.4–1.7), low income (OR 2.3, 95% CI 2.1–2.4), living alone (OR 2.6, 95% CI 2.3–3.0), smoking (OR 1.4, 95% CI 1.3–1.6) and certain other mental disorders (e.g. anxiety, phobia). Similar, albeit weaker, associations were observed with depressive symptoms. Among those with MDE, about 15% sought medical help or took psychiatric medication, 15% reported having suicidal ideation and 6% reported attempting suicide.
Conclusions
Among Chinese adults, the patterns and correlates of MDE were generally consistent with those observed in the West. The low rates of seeking professional help and treatment highlight the great gap in mental health services in China.
We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.