We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quantum field theory predicts a nonlinear response of the vacuum to strong electromagnetic fields of macroscopic extent. This fundamental tenet has remained experimentally challenging and is yet to be tested in the laboratory. A particularly distinct signature of the resulting optical activity of the quantum vacuum is vacuum birefringence. This offers an excellent opportunity for a precision test of nonlinear quantum electrodynamics in an uncharted parameter regime. Recently, the operation of the high-intensity Relativistic Laser at the X-ray Free Electron Laser provided by the Helmholtz International Beamline for Extreme Fields has been inaugurated at the High Energy Density scientific instrument of the European X-ray Free Electron Laser. We make the case that this worldwide unique combination of an X-ray free-electron laser and an ultra-intense near-infrared laser together with recent advances in high-precision X-ray polarimetry, refinements of prospective discovery scenarios and progress in their accurate theoretical modelling have set the stage for performing an actual discovery experiment of quantum vacuum nonlinearity.
In this paper, we investigate the attitude manoeuver planning and tracking control of the flexible satellite equipped with a coilable mast. Due to its flexible beamlike structure, the coilable mast experiences bending and torsional modal vibrations in multi-direction. The complex nonlinear coupling and other external disturbances significantly impact the achievement of high-precision attitude control. To overcome these challenges, a robust attitude tracking controller is proposed for easy implementation by the Attitude Determination and Control System (ADCS). The controller consists of a disturbance compensator, feedforward controller and output feedback controller. The compensator, based on a Nonlinear Disturbance Observer (NDO), effectively compensates for the cluster disturbances caused by vibrations, environmental factors and parameter perturbations. The feedforward controller tracks the desired path in the nominal satellite model. Furthermore, the output feedback controller enables large-angle manoeuver control of the satellite and evaluates the suppression effect of the controlled output on the observation error of cluster disturbances used the ${L_2}$-gain. Simulation results demonstrate that the proposed controller successfully achieves high-precision attitude tracking control during large-angle manoeuvering.
Nursing home residents may be particularly vulnerable to coronavirus disease 2019 (COVID-19). Therefore, a question is when and how often nursing homes should test staff for COVID-19 and how this may change as severe acute respiratory coronavirus virus 2 (SARS-CoV-2) evolves.
Design:
We developed an agent-based model representing a typical nursing home, COVID-19 spread, and its health and economic outcomes to determine the clinical and economic value of various screening and isolation strategies and how it may change under various circumstances.
Results:
Under winter 2023–2024 SARS-CoV-2 omicron variant conditions, symptom-based antigen testing averted 4.5 COVID-19 cases compared to no testing, saving $191 in direct medical costs. Testing implementation costs far outweighed these savings, resulting in net costs of $990 from the Centers for Medicare & Medicaid Services perspective, $1,545 from the third-party payer perspective, and $57,155 from the societal perspective. Testing did not return sufficient positive health effects to make it cost-effective [$50,000 per quality-adjusted life-year (QALY) threshold], but it exceeded this threshold in ≥59% of simulation trials. Testing remained cost-ineffective when routinely testing staff and varying face mask compliance, vaccine efficacy, and booster coverage. However, all antigen testing strategies became cost-effective (≤$31,906 per QALY) or cost saving (saving ≤$18,372) when the severe outcome risk was ≥3 times higher than that of current omicron variants.
Conclusions:
SARS-CoV-2 testing costs outweighed benefits under winter 2023–2024 conditions; however, testing became cost-effective with increasingly severe clinical outcomes. Cost-effectiveness can change as the epidemic evolves because it depends on clinical severity and other intervention use. Thus, nursing home administrators and policy makers should monitor and evaluate viral virulence and other interventions over time.
Previously published guidelines have provided comprehensive recommendations for detecting and preventing healthcare-associated infections (HAIs). The intent of this document is to highlight practical recommendations in a concise format designed to assist acute-care hospitals in implementing and prioritizing efforts to prevent methicillin-resistant Staphylococcus aureus (MRSA) transmission and infection. This document updates the “Strategies to Prevent Methicillin-Resistant Staphylococcus aureus Transmission and Infection in Acute Care Hospitals” published in 2014.1 This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA). It is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the Association for Professionals in Infection Control and Epidemiology (APIC), the American Hospital Association (AHA), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise.
As an effective drag reduction and thermal protection technology, the opposing jet can guarantee the flight safety of the hypersonic vehicle. In this paper, the jet mode transition is realised by controlling the total jet pressure ratio value (PR) with a function. The jet mode transition from the long penetration mode (LPM) to the short penetration mode (SPM) uses an increasing function. However, the jet mode transition from SPM to LPM uses a decreasing function. The flow field reconstruction process of a two-dimensional axisymmetric blunt body model in the hypersonic flow is studied when the jet mode transition between SPM and LPM changes into each other. The flow field structures and wall parameters of the LPM and SPM transition processes are obtained. The results indicate that the drag and Stanton number both decrease in the transition stage from LPM to SPM, and this is beneficial for the improvement of the drag reduction and thermal protection effect. The peak values of drag and Stanton number fall by 36.39% and 46.40%, respectively. When the jet mode transforms from SPM to LPM, the Stanton number increases, and the drag force first increases and then decreases. However, the final drag reduction effect is not obvious. With the increase in the change rate of the total pressure ratio of the two jet transformation modes, the jet mode transition time is advanced, and the flow field changes more violently.
Background: Saccade and pupil responses are potential neurodegenerative disease biomarkers due to overlap between oculomotor circuitry and disease-affected areas. Instruction-based tasks have previously been examined as biomarker sources, but are arduous for patients with limited cognitive abilities; additionally, few studies have evaluated multiple neurodegenerative pathologies concurrently. Methods: The Ontario Neurodegenerative Disease Research Initiative recruited individuals with Alzheimer’s disease (AD), mild cognitive impairment (MCI), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, progressive supranuclear palsy, or Parkinson’s disease (PD). Patients (n=274, age 40-86) and healthy controls (n=101, age 55-86) viewed 10 minutes of frequently changing video clips without instruction while their eyes were tracked. We evaluated differences in saccade and pupil parameters (e.g. saccade frequency and amplitude, pupil size, responses to clip changes) between groups. Results: Preliminary data indicates low-level behavioural alterations in multiple disease cohorts: increased centre bias, lower overall saccade rate and reduced saccade amplitude. After clip changes, patient groups generally demonstrated lower saccade rate but higher microsaccade rate following clip change to varying degrees. Additionally, pupil responses were blunted (AD, MCI, ALS) or exaggerated (PD). Conclusions: This task may generate behavioural biomarkers even in cognitively impaired populations. Future work should explore the possible effects of factors such as medication and disease stage.
Screening for asymptomatic bacteriuria (ASB) is not recommended outside of patients undergoing invasive urological procedures and during pregnancy. Despite national guidelines recommending against screening for ASB, this practice is prevalent. We present outcomes from a quality-improvement intervention targeting patients undergoing cardiac artery bypass grafting surgery (CABG) at Massachusetts General Hospital, a tertiary-care hospital in Boston, Massachusetts, where preoperative testing checklists were modified to remove routine urinalysis and urine culture. This was a before-and-after intervention study.
Methods:
Prior to the intervention, screening for ASB was included in the preoperative check list for all patients undergoing CABG. We assessed the proportion of patients undergoing screening for ASB in the 6 months prior to and after the intervention. We estimated cost savings from averted laboratory analyses, and we evaluated changes in antibiotic prescriptions. We additionally examined the incidence of postoperative surgical-site infections (SSIs), central-line–associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs) and Clostridioides difficile infections (CDIs).
Results:
Comparing the pre- and postintervention periods, urinalyses decreased by 76.5% and urine cultures decreased by 87.0%, with an estimated cost savings of $8,090.38. There were 50% fewer antibiotic prescriptions for bacteriuria after the intervention.
Conclusions:
Removal of urinalysis and urine culture from preoperative checklists for cardiac surgery led to a statistically significant decrease in testing without an increase in SSIs, CLABSIs, CAUTIs, or CDI. Challenges identified included persistence of checklists in templated order sets in the electronic health record.
OBJECTIVES/GOALS: Surgical training is constrained by duty hour limits, bias, and a trial-and-error learning process. Surgeon skill variation is a healthcare system disparity that can impact patient outcomes. Incorporating validated, standardized assessment tools and machine learning (ML) algorithms may help to standardize and reduce bias in surgeon education. METHODS/STUDY POPULATION: To support assessment tool and ML algorithm development, we are curating an annotated video registry of neurosurgical procedures. Point-of-view video of resident and attending neurosurgeons performing craniotomies is recorded via an eye-tracking headset. A Delphi panel of neurosurgeons will review the video and determine which represent expert versus trainee performance. Neurosurgery attendings will be interviewed to provide descriptions of craniotomies which will be used to develop an assessment rubric. A Delphi panel will determine what rubric components should be maintained. New craniotomy videos will be viewed by attendings in a blinded fashion while completing the assessment rubric. An online feedback platform is being developed allowing residents to prospectively track assessment data. RESULTS/ANTICIPATED RESULTS: We anticipate development of an annotated, institutional video database featuring craniotomies performed by residents and attending neurosurgeons. Using a Delphi approach, we anticipate achieving consensus on which videos reflect expert versus trainee performance. We anticipate development of a novel craniotomy assessment rubric that is both valid and reliable. Our online feedback platform will allow prospective tracking of assessment data from multiple sources and enhanced transparency in the feedback process. The video registry and assessment data will enable development of novel ML algorithms able to recognize craniotomy segments and estimate operator skill. DISCUSSION/SIGNIFICANCE: Building a video registry of procedures, validated assessment tools, and a prototype feedback platform enables a pipeline for ML algorithm development. Together these tools will help to standardize and optimize resident education translating to earlier operative independence, improved patient safety, and reduced bias during surgical training.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
We summarize what we assess as the past year's most important findings within climate change research: limits to adaptation, vulnerability hotspots, new threats coming from the climate–health nexus, climate (im)mobility and security, sustainable practices for land use and finance, losses and damages, inclusive societal climate decisions and ways to overcome structural barriers to accelerate mitigation and limit global warming to below 2°C.
Technical summary
We synthesize 10 topics within climate research where there have been significant advances or emerging scientific consensus since January 2021. The selection of these insights was based on input from an international open call with broad disciplinary scope. Findings concern: (1) new aspects of soft and hard limits to adaptation; (2) the emergence of regional vulnerability hotspots from climate impacts and human vulnerability; (3) new threats on the climate–health horizon – some involving plants and animals; (4) climate (im)mobility and the need for anticipatory action; (5) security and climate; (6) sustainable land management as a prerequisite to land-based solutions; (7) sustainable finance practices in the private sector and the need for political guidance; (8) the urgent planetary imperative for addressing losses and damages; (9) inclusive societal choices for climate-resilient development and (10) how to overcome barriers to accelerate mitigation and limit global warming to below 2°C.
Social media summary
Science has evidence on barriers to mitigation and how to overcome them to avoid limits to adaptation across multiple fields.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
Background: Eye movements reveal neurodegenerative disease processes due to overlap between oculomotor circuitry and disease-affected areas. Characterizing oculomotor behaviour in context of cognitive function may enhance disease diagnosis and monitoring. We therefore aimed to quantify cognitive impairment in neurodegenerative disease using saccade behaviour and neuropsychology. Methods: The Ontario Neurodegenerative Disease Research Initiative recruited individuals with neurodegenerative disease: one of Alzheimer’s disease, mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson’s disease, or cerebrovascular disease. Patients (n=450, age 40-87) and healthy controls (n=149, age 42-87) completed a randomly interleaved pro- and anti-saccade task (IPAST) while their eyes were tracked. We explored the relationships of saccade parameters (e.g. task errors, reaction times) to one another and to cognitive domain-specific neuropsychological test scores (e.g. executive function, memory). Results: Task performance worsened with cognitive impairment across multiple diseases. Subsets of saccade parameters were interrelated and also differentially related to neuropsychology-based cognitive domain scores (e.g. antisaccade errors and reaction time associated with executive function). Conclusions: IPAST detects global cognitive impairment across neurodegenerative diseases. Subsets of parameters associate with one another, suggesting disparate underlying circuitry, and with different cognitive domains. This may have implications for use of IPAST as a cognitive screening tool in neurodegenerative disease.
To describe the genomic analysis and epidemiologic response related to a slow and prolonged methicillin-resistant Staphylococcus aureus (MRSA) outbreak.
Design:
Prospective observational study.
Setting:
Neonatal intensive care unit (NICU).
Methods:
We conducted an epidemiologic investigation of a NICU MRSA outbreak involving serial baby and staff screening to identify opportunities for decolonization. Whole-genome sequencing was performed on MRSA isolates.
Results:
A NICU with excellent hand hygiene compliance and longstanding minimal healthcare-associated infections experienced an MRSA outbreak involving 15 babies and 6 healthcare personnel (HCP). In total, 12 cases occurred slowly over a 1-year period (mean, 30.7 days apart) followed by 3 additional cases 7 months later. Multiple progressive infection prevention interventions were implemented, including contact precautions and cohorting of MRSA-positive babies, hand hygiene observers, enhanced environmental cleaning, screening of babies and staff, and decolonization of carriers. Only decolonization of HCP found to be persistent carriers of MRSA was successful in stopping transmission and ending the outbreak. Genomic analyses identified bidirectional transmission between babies and HCP during the outbreak.
Conclusions:
In comparison to fast outbreaks, outbreaks that are “slow and sustained” may be more common to units with strong existing infection prevention practices such that a series of breaches have to align to result in a case. We identified a slow outbreak that persisted among staff and babies and was only stopped by identifying and decolonizing persistent MRSA carriage among staff. A repeated decolonization regimen was successful in allowing previously persistent carriers to safely continue work duties.
The extent of the reduction of maize (Zea mays L.) kernel moisture content through drying is closely related to field temperature (or accumulated temperature; AT) following maturation. In 2017 and 2018, we selected eight maize hybrids that are widely planted in Northeastern China to construct kernel drying prediction models for each hybrid based on kernel drying dynamics. In the traditional harvest scenario using the optimal sowing date (OSD), maize kernels underwent drying from 4th September to 5th October, with variation coefficients of 1.0–1.9. However, with a latest sowing date (LSD), drying occurred from 14th September to 31st October, with variation coefficients of 1.3–3.0. In the changed harvest scenario, the drying time of maize sown on the OSD condition was from 12th September to 9th November with variation coefficients of 1.3–3.0, while maize sown on the LSD had drying dates of 26th September to 28th October with variation coefficients of 1.5–3.6. In the future harvest scenario, the Fengken 139 (FK139) and Jingnongke 728 (JNK728) hybrids finished drying on 20th October and 8th November, respectively, when sown on the OSD and had variation coefficients of 2.7–2.8. Therefore, the maize kernel drying time was gradually delayed and was associated with an increased demand for AT ⩾ 0°C late in the growing season. Furthermore, we observed variation among different growing seasons likely due to differences in weather patterns, and that sowing dates impact variations in drying times to a greater extent than harvest scenarios.
The CLEAR Trial recently found that decolonization reduced infections and hospitalizations in MRSA carriers in the year following hospital discharge. In this secondary analysis, we explored whether decolonization had a similar benefit in the subgroup of trial participants who harbored USA300, using two different definitions for the USA300 strain-type.
To characterize and compare severe acute respiratory coronavirus virus 2 (SARS-CoV-2)–specific immune responses in plasma and gingival crevicular fluid (GCF) from nursing home residents during and after natural infection.
Design:
Prospective cohort.
Setting:
Nursing home.
Participants:
SARS-CoV-2–infected nursing home residents.
Methods:
A convenience sample of 14 SARS-CoV-2–infected nursing home residents, enrolled 4–13 days after real-time reverse transcription polymerase chain reaction diagnosis, were followed for 42 days. After diagnosis, plasma SARS-CoV-2–specific pan-Immunoglobulin (Ig), IgG, IgA, IgM, and neutralizing antibodies were measured at 5 time points, and GCF SARS-CoV-2–specific IgG and IgA were measured at 4 time points.
Results:
All participants demonstrated immune responses to SARS-CoV-2 infection. Among 12 phlebotomized participants, plasma was positive for pan-Ig and IgG in all 12 participants. Neutralizing antibodies were positive in 11 participants; IgM was positive in 10 participants, and IgA was positive in 9 participants. Among 14 participants with GCF specimens, GCF was positive for IgG in 13 participants and for IgA in 12 participants. Immunoglobulin responses in plasma and GCF had similar kinetics; median times to peak antibody response were similar across specimen types (4 weeks for IgG; 3 weeks for IgA). Participants with pan-Ig, IgG, and IgA detected in plasma and GCF IgG remained positive throughout this evaluation, 46–55 days after diagnosis. All participants were viral-culture negative by the first detection of antibodies.
Conclusions:
Nursing home residents had detectable SARS-CoV-2 antibodies in plasma and GCF after infection. Kinetics of antibodies detected in GCF mirrored those from plasma. Noninvasive GCF may be useful for detecting and monitoring immunologic responses in populations unable or unwilling to be phlebotomized.
Antisaccade tasks can be used to index cognitive control processes, e.g. attention, behavioral inhibition, working memory, and goal maintenance in people with brain disorders. Though diagnoses of schizophrenia (SZ), schizoaffective (SAD), and bipolar I with psychosis (BDP) are typically considered to be distinct entities, previous work shows patterns of cognitive deficits differing in degree, rather than in kind, across these syndromes.
Methods
Large samples of individuals with psychotic disorders were recruited through the Bipolar-Schizophrenia Network on Intermediate Phenotypes 2 (B-SNIP2) study. Anti- and pro-saccade task performances were evaluated in 189 people with SZ, 185 people with SAD, 96 people with BDP, and 279 healthy comparison participants. Logistic functions were fitted to each group's antisaccade speed-performance tradeoff patterns.
Results
Psychosis groups had higher antisaccade error rates than the healthy group, with SZ and SAD participants committing 2 times as many errors, and BDP participants committing 1.5 times as many errors. Latencies on correctly performed antisaccade trials in SZ and SAD were longer than in healthy participants, although error trial latencies were preserved. Parameters of speed-performance tradeoff functions indicated that compared to the healthy group, SZ and SAD groups had optimal performance characterized by more errors, as well as less benefit from prolonged response latencies. Prosaccade metrics did not differ between groups.
Conclusions
With basic prosaccade mechanisms intact, the higher speed-performance tradeoff cost for antisaccade performance in psychosis cases indicates a deficit that is specific to the higher-order cognitive aspects of saccade generation.
Daytime sleepiness is associated with multiple negative outcomes in older adults receiving long-term services and supports (LTSS) including reduced cognitive performance, need for greater assistance with activities of daily living and decreased social engagement. The purpose of this study was to identify predictors of change in subjective daytime sleepiness among older adults during their first 2 years of receiving LTSS.
Design and Setting:
Secondary analysis of data from a prospective longitudinal study of older adults who received LTSS in their homes, assisted living communities or nursing homes interviewed at baseline and every 3 months for 24 months.
Participants:
470 older adults (60 years and older) newly enrolled in LTSS (mean = 81, SD = 8.7; range 60–98; 71% women).
Measurements:
Subjective daytime sleepiness was assessed every 3 months through 2 years using the Epworth Sleepiness Scale. Multiple validated measures were used to capture health-related quality of life characteristics of enrollees and their environment, including symptom status (Symptom Bother Scale), cognition (Mini Mental Status Exam), physical function (Basic Activities of Daily Living), physical and mental general health, quality of life (Dementia Quality of Life, D-QoL), depressive symptoms (Geriatric Depression Scale) and social support (Medical Outcomes Survey-Social Support).
Results:
Longitudinal mixed effects modeling was used to examine the relationship between independent variables and continuous measure of daytime sleepiness. Increased feelings of belonging, subscale of the D-QoL (effect size = −0.006, 95% CI: −0.013 to −0.0001, p = 0.045) and higher number of depressive symptoms (effect size = −0.002, 95% CI: −0.004 to −0.001, p = 0.001) at baseline were associated with slower rates of increase in daytime sleepiness over time.
Conclusions:
Comprehensive baseline and longitudinal screening for changes in daytime sleepiness along with depression and perceived quality of life should be used to inform interventions aimed at reducing daytime sleepiness among older adults receiving LTSS.
Although the deviations of brain volume deficits in sporadic and familial first-episode schizophrenia patients (FEP) had been presented, the difference of brain asymmetries remained unidentified.
Objectives
To assess the potential differences of volumetric asymmetries of gray matter (GM) and white matter (WM) between groups.
Aims
To find out the different injury alteration of sporadic FEP and familial FEP.
Methods
42 sporadic and 30 familiar drug-naïve FEP with and 72 matched normal controls (NC) were recruited. Participants were assessed with neuropsychological tests and scanned by a 3.0T MRI to obtain T1-weighted and DTI images. Lateralization distribution maps of GM and WM volume were generated by employing optimized voxel-based morphometry. The asymmetries were analyzed by comparing calculating Laterality Index (LI) voxel by voxel.
Results
All three groups showed similar overall brain torque. Familiar FEP have more regional extensive GM asymmetry brain lesions compared to sporadic FEP. There was no shared regional lesion between two groups. LIGM and LIWM in right superior temporal were negatively correlated. Significant negative correlations were also found between LIGM of left superior parietal lobule and LIWM of right superior parietal lobule, and between LIGM of right inferior parietal lobule and LIWM of left inferior parietal lobule. The asymmetry in distinct brain regions were related to cognitive deficits especially in the domains of language and memory.
Conclusions
The two patient groups had different alteration in injuries of brain asymmetry. Familiar FEP has more GM extensive asymmetry brain region, which may correlate with their high genetic burdens.