We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
Intracellular levels of glutathione, the major mammalian antioxidant, are reported to decline with age in several species. To understand whether ageing affects circulating glutathione levels in cats, blood was sampled from two age groups, < 3 years and > 9 years. Further, to determine whether dietary supplementation with glutathione precursor glycine (GLY) affects glutathione concentrations in senior cats (> 8 years), a series of free GLY inclusion level dry diets were fed. Subsequently, a 16-week GLY feeding study was conducted in senior cats (> 7 years), measuring glutathione, and markers of oxidative stress. Whole blood and erythrocyte total, oxidised and reduced glutathione levels were significantly decreased in senior cats, compared with their younger counterparts (P ≤ 0·02). The inclusion level study identified 1·5 % free GLY for the subsequent dry diet feeding study. Significant increases in erythrocyte total and reduced glutathione were observed between senior cats fed supplemented and control diets at 4 weeks (P ≤ 0·03; maximum difference of 1·23 µM). Oxidative stress markers were also significantly different between groups at 8 (P = 0·004; difference of 0·68 nG/ml in 8-hydroxy-2'-deoxyguanosine) and 12 weeks (P ≤ 0·049; maximum difference of 0·62 nG/mG Cr in F2-isoprostane PGF2α). Senior cats have lower circulating glutathione levels compared with younger cats. Feeding senior cats a complete and balanced dry diet supplemented with 1·5 % free GLY for 12 weeks elevated initial erythrocyte glutathione and altered markers of oxidative stress. Dietary supplementation with free GLY provides a potential opportunity to restore age-associated reduction in glutathione in cats.
To determine the changes in severe acute respiratory coronavirus virus 2 (SARS-CoV-2) serologic status and SARS-CoV-2 infection rates in healthcare workers (HCWs) over 6-months of follow-up.
Design:
Prospective cohort study.
Setting and participants:
HCWs in the Chicago area.
Methods:
Cohort participants were recruited in May and June 2020 for baseline serology testing (Abbott anti-nucleocapsid IgG) and were then invited for follow-up serology testing 6 months later. Participants completed monthly online surveys that assessed demographics, medical history, coronavirus disease 2019 (COVID-19), and exposures to SARS-CoV-2. The electronic medical record was used to identify SARS-CoV-2 polymerase chain reaction (PCR) positivity during follow-up. Serologic conversion and SARS-CoV-2 infection or possible reinfection rates (cases per 10,000 person days) by antibody status at baseline and follow-up were assessed.
Results:
In total, 6,510 HCWs were followed for a total of 1,285,395 person days (median follow-up, 216 days). For participants who had baseline and follow-up serology checked, 285 (6.1%) of the 4,681 seronegative participants at baseline seroconverted to positive at follow-up; 138 (48%) of the 263 who were seropositive at baseline were seronegative at follow-up. When analyzed by baseline serostatus alone, 519 (8.4%) of 6,194 baseline seronegative participants had a positive PCR after baseline serology testing (4.25 per 10,000 person days). Of 316 participants who were seropositive at baseline, 8 (2.5%) met criteria for possible SARS-CoV-2 reinfection (ie, PCR positive >90 days after baseline serology) during follow-up, a rate of 1.27 per 10,000 days at risk. The adjusted rate ratio for possible reinfection in baseline seropositive compared to infection in baseline seronegative participants was 0.26 (95% confidence interval, 0.13–0.53).
Conclusions:
Seropositivity in HCWs is associated with moderate protection from future SARS-CoV-2 infection.
In response to the 2013–2016 Ebola virus disease outbreak, the US government designated certain healthcare institutions as Ebola treatment centers (ETCs) to better prepare for future emerging infectious disease outbreaks. This study investigated ETC experiences and critical care policies for patients with viral hemorrhagic fever (VHF).
Design:
A 58-item questionnaire elicited information on policies for 9 critical care interventions, factors that limited care provision, and innovations developed to deliver care.
Setting and participants:
The questionnaire was sent to 82 ETCs.
Methods:
We analyzed ordinal and categorical data pertaining to the ETC characteristics and descriptive data about their policies and perceived challenges. Statistical analyses assessed whether ETCs with experience caring for VHF patients were more likely to have critical care policies than those that did not.
Results:
Of the 27 ETCs who responded, 17 (63%) were included. Among them, 8 (47%) reported experience caring for persons under investigation or confirmed cases of VHF. Most felt ready to provide intubation, chest compressions, and renal replacement therapy to these patients. The factors most cited for limiting care were staff safety and clinical futility. Innovations developed to better provide care included increased simulation training and alternative technologies for procedures and communication.
Conclusions:
There were broad similarities in critical care policies and limitations among institutions. There were several interventions, namely ECMO and cricothyrotomy, which few institutions felt ready to provide. Future studies could identify obstacles to providing these interventions and explore policy changes after increased experience with novel infectious diseases, such as COVID-19.
This study compared the level of education and tests from multiple cognitive domains as proxies for cognitive reserve.
Method:
The participants were educationally, ethnically, and cognitively diverse older adults enrolled in a longitudinal aging study. We examined independent and interactive effects of education, baseline cognitive scores, and MRI measures of cortical gray matter change on longitudinal cognitive change.
Results:
Baseline episodic memory was related to cognitive decline independent of brain and demographic variables and moderated (weakened) the impact of gray matter change. Education moderated (strengthened) the gray matter change effect. Non-memory cognitive measures did not incrementally explain cognitive decline or moderate gray matter change effects.
Conclusions:
Episodic memory showed strong construct validity as a measure of cognitive reserve. Education effects on cognitive decline were dependent upon the rate of atrophy, indicating education effectively measures cognitive reserve only when atrophy rate is low. Results indicate that episodic memory has clinical utility as a predictor of future cognitive decline and better represents the neural basis of cognitive reserve than other cognitive abilities or static proxies like education.
Mobile devices with health apps, direct-to-consumer genetic testing, crowd-sourced information, and other data sources have enabled research by new classes of researchers. Independent researchers, citizen scientists, patient-directed researchers, self-experimenters, and others are not covered by federal research regulations because they are not recipients of federal financial assistance or conducting research in anticipation of a submission to the FDA for approval of a new drug or medical device. This article addresses the difficult policy challenge of promoting the welfare and interests of research participants, as well as the public, in the absence of regulatory requirements and without discouraging independent, innovative scientific inquiry. The article recommends a series of measures, including education, consultation, transparency, self-governance, and regulation to strike the appropriate balance.
Drawing on a landscape analysis of existing data-sharing initiatives, in-depth interviews with expert stakeholders, and public deliberations with community advisory panels across the U.S., we describe features of the evolving medical information commons (MIC). We identify participant-centricity and trustworthiness as the most important features of an MIC and discuss the implications for those seeking to create a sustainable, useful, and widely available collection of linked resources for research and other purposes.
Chronic spontaneous urticaria (CSU) has been associated with depression and can have an impact on quality of life. Therefore, researchers have suggested the potential utility of psychological interventions for targeting depression among CSU patients. Psychological interventions that may hold the most promise are those that are brief and easily transportable, such as brief behavioural activation treatment for depression. We report results of a preliminary investigation of an uncontrolled open trial of a one-session behavioural activation treatment for depression designed for patients with CSU (BATD-CSU) at a university-based allergy and immunology clinic. Participants were 11 females with chronic, poorly controlled urticaria and symptoms of depression. Following the completion of pretreatment questionnaires, participants were administered BATD-CSU primarily by non-mental health professionals trained and supervised in its delivery. One month post-BATD-CSU, participants completed follow-up questionnaires. Participants exhibited significant reductions in depression severity, avoidance/rumination, and work/school impairment. BATD-CSU was also associated with improvements in urticaria control one month post-treatment. Moreover, five of nine patients reported reliable and clinically significant improvement on at least one outcome. Results demonstrate that BATD-CSU may have benefits for CSU patients even when consisting of one session and delivered by professionals with limited background in psychological interventions, thus speaking to its feasibility and transportability.
Technology-based dietary assessment offers solutions to many of the limitations of traditional dietary assessment methodologies including cost, participation rates and the accuracy of data collected. The 24-h dietary recall (24HDR) method is currently the most utilised method for the collection of dietary intake data at a national level. Recently there have been many developments using web-based platforms to collect food intake data using the principles of the 24HDR method. This review identifies web- and computer-based 24HDR tools that have been developed for both children and adult population groups, and examines common design features and the methods used to investigate the performance and validity of these tools. Overall, there is generally good to strong agreement between web-based 24HDR and respective reference measures for intakes of macro- and micronutrients.
The incorporation of exome and genome sequencing into research and clinical practice raises the possibility of providing a range of genomic results to relatives in the event of the death of the research participant or patient. Genomic data can be of direct relevance to the medical care of relatives. However, some test subjects (e.g., cancer patients) are at higher risk of dying before they receive their test results and thus may not be able to share useful information with family members. We created an Institutional Review Board (IRB)-approved document with talking points on the possibility of disclosure of results to family members after an individual’s death to discuss during the informed consent process for genomic testing with participants in a study of exome sequencing in the context of familial colorectal cancer/polyposis.
Edited by
Alex S. Evers, Washington University School of Medicine, St Louis,Mervyn Maze, University of California, San Francisco,Evan D. Kharasch, Washington University School of Medicine, St Louis
The use of nanotechnology based materials for chemical sensing has been of great interest since nanocrystalline materials have been shown to offer improved sensor sensitivity, stability, and response time. Several groups are successfully integrating nanostructures such as nanowires into operational sensors. The typical procedure may include random placement (e.g., dispersion, with fine-line patterning techniques used to create functional sensors) or time consuming precise fabrication (e.g., mechanical placement using an atomic force microscope or laser tweezer techniques). Dielectrophoresis has also been utilized, however it can be challenging to achieve good electrical contact of the nanostructures to the underlying electrodes. In this paper we report on a sensor platform that incorporates nanorods in a controlled, efficient, and effective manner. Semiconducting SnO2 nanorods are used as the sensing element for detection of hydrogen (H2) and propylene (C3H6) up to 600oC. Using a novel approach of combining dielectrophoresis with standard microfabrication processing techniques, we have achieved reproducible, time-efficient fabrication of gas sensors with reliable contacts to the SnO2 nanorods used for the detection of gases. The sensor layout is designed to assist in the alignment of the nanorods by selectively enhancing the electric field strength and allowing for the quick production of sensor arrays. The SnO2 nanorods are produced using a thermal evaporation-condensation approach. After growth, nanorods are separated from the resulting material using gravimetric separation. The rods vary in length from 3μm to greater than 10μm, with diameters ranging from 50 to 300nm. Dielectrophoresis is used to align multiple nanorods between electrodes. A second layer of metal is incorporated using standard microfabrication methods immediately after alignment to bury the ends of the rods making contact with the underlying electrodes within another layer of metal. Electrical contact was verified during testing by the response to H2 and C3H6 gases at a range of temperatures. Testing was performed on a stage with temperature control and probes were used for electrical contact. Gas flows into the testing chamber at a flow rate of 4000sccm. Sensor response of normalized current shift, |Igas-Iair|/Iair, was measured at a constant voltage bias. Sensors showed response to both H2 and C3H6. Detection of H2 was achieved at 100oC and response levels improved approximately 12000-fold at 600oC. Detection of C3H6 started at 100oC and improved approximately 10000-fold at 600oC. Detection of at least 200ppm for both gases was achieved at 600oC. Using this novel microfabrication approach, semiconducting SnO2 nanorods integrated into a microsensor platform have been demonstrated and sensing response showed dramatic increases at higher temperatures.
NASA has been developing very high temperature semiconductor integrated circuits for use in the hot sections of aircraft engines and for Venus exploration. This paper reports on long-term 500 °C electrical operation of prototype 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). As of this writing, some devices have surpassed 4000 hours of continuous 500 °C electrical operation in oxidizing air atmosphere with minimal change in relevant electrical parameters.