We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Triceps skinfold thickness (TSF) is a surrogate marker of subcutaneous fat. Evidence is limited about the association of sex-specific TSF with the risk of all-cause mortality among maintenance hemodialysis (MHD) patients. We aimed to investigate the longitudinal relationship of TSF with all-cause mortality among MHD patients. A multicenter prospective cohort study was performed in 1034 patients undergoing MHD. The primary outcome was all-cause mortality. Multivariable Cox proportional hazards models were used to evaluate the association of TSF with the risk of mortality. The mean (standard deviation) age of the study population was 54.1 (15.1) years. 599 (57.9%) of the participants were male. The median (interquartile range) of TSF was 9.7 (6.3–13.3 mm) in males and 12.7 (10.0–18.0 mm) in females. Over a median follow up of 4.4 years (interquartile range, 2.4-7.9 years), there were 548 (53.0%) deaths. When TSF was assessed as sex-specific quartiles, compared with those in quartile 1, the adjusted HRs (95%CIs) of all-cause mortality in quartile 2, quartile 3 and quartile 4 were 0.93 (0.73, 1.19), 0.75 (0.58, 0.97) and 0.69 (0.52, 0.92), respectively (P for trend =0.005). Moreover, when analyzed by sex, increased TSF (≥9.7 mm for males and ≥18mm for females) was significantly associated with a reduced risk of all-cause mortality (quartile 3-4 vs. quartile 1-2; HR, 0.70; 95%CI: 0.55, 0.90 in males; quartile 4 vs. Quartile 1-3; HR, 0.69; 95%CI: 0.48, 1.00 in females). In conclusion, high TSF was significantly associated with lower risk of all-cause mortality in MHD patients.
Emerging evidence indicates that gene–environment interactions (GEIs) are important underlying mechanisms for the development of schizophrenia (SZ). We investigated the associations of polygenic risk score for SZ (PRS-SZ), environmental measures, and their interactions with case–control status and clinical phenotypes among patients with schizophrenia spectrum disorders (SSDs).
Methods
The PRS-SZ for 717 SSD patients and 356 healthy controls (HCs) were calculated using the LDpred model. The Korea-Polyenvironmental Risk Score-I (K-PERS-I) and Early Trauma Inventory-Self Report (ETI-SR) were utilized as environmental measures. Logistic and linear regression analyses were performed to identify the associations of PRS-SZ and two environmental measures with case–control status and clinical phenotypes.
Results
The PRS-SZ explained 8.7% of SZ risk. We found greater associations of PRS-SZ and total scores of the K-PERS-I with case–control status compared to the ETI-SR total score. A significant additive interaction was found between PRS-SZ and K-PERS-I. With the subdomains of the K-PERS-I and ETI-SR, we identified significant multiplicative or additive interactions of PRS-SZ and parental socioeconomic status (pSES), childhood adversity, and recent life events in association with case–control status. For clinical phenotypes, significant interactions were observed between PRS-SZ and the ETI-SR total score for negative-self and between PRS-SZ and obstetric complications within the K-PERS-I for negative-others.
Conclusions
Our findings suggest that the use of aggregate scores for genetic and environmental measures, PRS-SZ and K-PERS-I, can more accurately predict case–control status, and specific environmental measures may be more suitable for the exploration of GEIs.
Little is known about the association between iodine nutrition status and bone health. The present study aimed to explore the connection between iodine nutrition status, bone metabolism parameters, and bone disease (osteopenia and osteoporosis). A cross-sectional survey was conducted involving 391, 395, and 421 adults from iodine fortification areas (IFA), iodine adequate areas (IAA), and iodine excess areas (IEA) of China. Iodine nutrition status, bone metabolism parameters and BMD were measured. Our results showed that, in IEA, the urine iodine concentrations (UIC) and serum iodine concentrations (SIC) were significantly higher than in IAA. BMD and Ca2+ levels were significantly different under different iodine nutrition levels and the BMD were negatively correlated with UIC and SIC. Univariate linear regression showed that gender, age, BMI, menopausal status, smoking status, alcohol consumption, UIC, SIC, free thyroxine, TSH, and alkaline phosphatase were associated with BMD. The prevalence of osteopenia was significantly increased in IEA, UIC ≥ 300 µg/l and SIC > 90 µg/l groups. UIC ≥ 300 µg/l and SIC > 90 µg/l were risk factors for BMD T value < –1·0 sd. In conclusion, excess iodine can not only lead to changes in bone metabolism parameters and BMD, but is also a risk factor for osteopenia and osteoporosis.
Spatial optimal responses to both inlet disturbances and harmonic external forcing for hypersonic flows over a blunt cone at non-zero angles of attack are obtained by efficiently solving the direct–adjoint equations with a parabolic approach. In either case, the most amplified disturbances initially take the form of localised streamwise vortices on the windward side and will undergo a two-stage evolution process when propagating downstream: they first experience a substantial algebraic growth by exploiting the Orr and lift-up mechanisms, and then smoothly transition to a quasi-exponential growth stage driven by the crossflow-instability mechanism, accompanied by an azimuthal advection of the disturbance structure towards the leeward side. The algebraic growth phase is most receptive to the external forcing, whereas the exponential growth stage relies on the disturbance frequency and can be significantly strengthened by increasing the angle of attack. The wavemaker delineating the structural sensitivity region for the optimal gain is shown to lie on the windward side immediately downstream of the inlet, implying a potent control strategy. Additionally, considerable non-modal growth is also observed for broadband high-frequency disturbances residing in the entropy layer.
This article is concerned with the spreading speed and traveling waves of a lattice prey–predator system with non-local diffusion in a periodic habitat. With the help of an associated scalar lattice equation, we derive the invasion speed for the predator. More specifically, when the dispersal kernel of the predator is exponentially bounded, the invasion speed is finite and can be characterized in terms of principal eigenvalues; while the dispersal kernel is algebraically decaying, the invasion speed is infinite and the accelerated spreading rate is obtained. Furthermore, the existence and non-existence of traveling waves connecting the semi-equilibrium point to a uniformly persistent state are established.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Artificial intelligence (AI) has been recently applied to different mental health illnesses and healthcare domains. This systematic review presents the application of AI in mental health in the domains of diagnosis, monitoring, and intervention. A database search (CCTR, CINAHL, PsycINFO, PubMed, and Scopus) was conducted from inception to February 2024, and a total of 85 relevant studies were included according to preestablished inclusion criteria. The AI methods most frequently used were support vector machine and random forest for diagnosis, machine learning for monitoring, and AI chatbot for intervention. AI tools appeared to be accurate in detecting, classifying, and predicting the risk of mental health conditions as well as predicting treatment response and monitoring the ongoing prognosis of mental health disorders. Future directions should focus on developing more diverse and robust datasets and on enhancing the transparency and interpretability of AI models to improve clinical practice.
During the automatic docking assembly of aircraft wing-fuselage, using monocular camera or dual-camera to monitor the docking stage of the fork-ear will result in an incomplete identification of the fork-ear pose-position and an inaccurate description of the deviation in the intersection holes’ position coordinates. To address this, a quality inspection and error correction method is proposed for the fork-ear docking assembly based on multi-camera stereo vision. Initially, a multi-camera stereo vision detection system is established to inspect the quality of fork-ear docking assembly. Subsequently, a spatial position solution mathematical model of the fork-ear feature points is developed, and a spatial pose determination mathematical model of fork-ear is established by utilised the elliptical cone. Finally, an enhanced artificial fish swarm particle filter algorithm is proposed to track and estimate the coordinate of the fork-ear feature points. An adaptive weighted fusion algorithm is employed to fuse the detection data from the multi-camera and the laser tracker, and a wing pose-position fine-tuning error correction model is constructed. Experimental results demonstrate that the method enhances the effect of the assembly quality inspection and effectively improves the wing-fuselage docking assembly accuracy of the fork-ear type aircraft.
The differential diagnosis of psychiatric disorders is relatively challenging for several reasons. In this context, we believe that task-based magnetic resonance imaging (MRI) can serve as a tool for differential diagnosis. The aim of this study was to explore the commonalities in brain activities among individuals with psychiatric disorders and to identify the key brain regions that can distinguish between these disorders.
Methods
The PubMed, MEDLINE, EMBASE, Web of Science, Scopus, PsycINFO, and Google Scholar databases were searched for whole-brain functional MRI studies that compared psychiatric patients and normal controls. The psychiatric disorders included schizophrenia (SCZ), bipolar disorder (BD), major depressive disorder (MDD), obsessive–compulsive disorder, attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD). Studies using go–nogo paradigms were selected, we then conducted activation likelihood estimation (ALE) meta-analysis, factor analysis, and regression analysis on these studies subsequently.
Results
A total of 152 studies (108 with patients) were selected and a consistent pattern was found, that is, decreased activities in the same brain regions across six disorders. Factor analysis clustered six disorders into three pairs: SCZ and ASD, MDD and BD, and ADHD and BD. Furthermore, the heterogeneity of SCZ and ASD was located in the left and right thalamus; and the heterogeneity of MDD and BD was located in the thalamus, insula, and superior frontal gyrus.
Conclusion
The results can lead to a new classification method for psychiatric disorders, benefit the differential diagnosis at an early stage, and help to understand the biobasis of psychiatric disorders.
The East Asian winter monsoon (EAWM) has a profound effect on the winter climate in East Asia. The modern EAWM variability is tightly linked to the high-latitude Northern Hemisphere climate change through the Siberian High and can also be regulated by the low-latitude El Niño-Southern Oscillation through oceanic or atmospheric teleconnections. However, the Quaternary EAWM evolution has long been only attributed to the high-latitude climate change, resulting in the uncertainty in interpreting the out-of-phased EAWM variation recording in the East Asian continent and marginal seas. Here we presented a sediment record at Integrated Ocean Drilling Program Site U1427 in the southern Japan Sea to reconstruct the EAWM evolution since the last glacial maximum. By combining our record with previous reconstructions and simulations, we found the synchronous relationship between winter monsoon in northern and southern regions of East Asia from ∼24 to 8 ka, but anti-correlated relationship since ∼8 ka. We proposed the winter insolation and Atlantic meridional overturning circulation were the main drivers from last glacial to early Holocene, and then ENSO became a dominant factor in controlling the regional heterogeneity of EAWM evolution in the middle and late Holocene. This research explains much of the controversy in the Quaternary EAWM records and highlights the low-high latitude interaction in East Asian winter climate change.
We systematically study the dissipative anomaly in compressible magnetohydrodynamic (MHD) turbulence using direct numerical simulations, and show that the total dissipation remains finite as viscosity diminishes. The dimensionless dissipation rate $\mathcal {C}_{\varepsilon }$ fits well with the model $\mathcal {C}_{\varepsilon } = \mathcal {C}_{\varepsilon,\infty } + \mathcal {D}/R_L^-$ for all levels of flow compressibility considered here, where $R_L^-$ is the generalized large-scale Reynolds number. The asymptotic value $\mathcal {C}_{\varepsilon,\infty }$ describes the total energy transfer flux, and decreases with increase of the flow compressibility, indicating non-universality of the dimensionless dissipation rate in compressible MHD turbulence. After introducing an empirically modified dissipation rate, the data from compressible cases collapse to a form similar to the incompressible MHD case depending only on the modified Reynolds number.
Infection mechanism plays a significant role in epidemic models. To investigate the influence of saturation effect, a nonlocal (convolution) dispersal susceptible-infected-susceptible epidemic model with saturated incidence is considered. We first study the impact of dispersal rates and total population size on the basic reproduction number. Yang, Li and Ruan (J. Differ. Equ. 267 (2019) 2011–2051) obtained the limit of basic reproduction number as the dispersal rate tends to zero or infinity under the condition that a corresponding weighted eigenvalue problem has a unique positive principal eigenvalue. We remove this additional condition by a different method, which enables us to reduce the problem on the limiting profile of the basic reproduction number into that of the spectral bound of the corresponding operator. Then we establish the existence and uniqueness of endemic steady states by a equivalent equation and finally investigate the asymptotic profiles of the endemic steady states for small and large diffusion rates to provide reference for disease prevention and control, in which the lack of regularity of the endemic steady state and Harnack inequality makes the limit function of the sequence of the endemic steady state hard to get. Finally, we find whether lowing the movements of susceptible individuals can eradicate the disease or not depends on not only the sign of the difference between the transmission rate and the recovery rate but also the total population size, which is different from that of the model with standard or bilinear incidence.
This study aims to gain insight into each attribute as presented in the value of implantable medical devices, quantify attributes’ strength and their relative importance, and identify the determinants of stakeholders’ preferences.
Methods
A mixed-methods design was used to identify attributes and levels reflecting stakeholders’ preference toward the value of implantable medical devices. This design combined literature reviewing, expert’s consultation, one-on-one interactions with stakeholders, and a pilot testing. Based on the design, six attributes and their levels were settled. Among 144 hypothetical profiles, 30 optimal choice sets were developed, and healthcare professionals (decision-makers, health technology assessment experts, hospital administrators, medical doctors) and patients as stakeholders in China were surveyed. A total of 134 respondents participated in the survey. Results were analyzed by mixed logit model and conditional logit model.
Results
The results of the mixed logit model showed that all the six attributes had a significant impact on respondents’ choices on implantable medical devices. Respondents were willing to pay the highest for medical devices that provided improvements in clinical safety, followed by increased clinical effectiveness, technology for treating severe diseases, improved implement capacity, and innovative technology (without substitutes).
Conclusions
The findings of DCE will improve the current evaluation on the value of implantable medical devices in China and provide decision-makers with the relative importance of the criteria in pricing and reimbursement decision-making of implantable medical devices.
Creating an environmentally friendly precursor to form a kaolinite intercalation compound is important for promoting the applications of nanohybrid kaolinite in electrochemical sensors, low- or zero-toxicity drug carriers, and clay-polymer nanocompounds. In the present study, a stable hydrated kaolinite pre-cursor with d001= 0.84 nm was prepared successfully by heating the transition phase, the as-prepared kaolinite-hydrazine intercalate, at temperatures between 40 and 70ºC. The structure of the hydrated kaolinite was characterized by X-ray diffraction and infrared spectroscopy. The morphology was examined using scanning electron microscopy. The results showed that the hydrated hydrazine of the transition phase was easy to decompose to hydrazines and water molecules in the interlayer at 40-70ºC. Hydrazine molecules de-intercalated gradually, and water molecules remained in the ditrigonal holes of the silicate layer with sufficient stability, finally forming the stable 0.84 nm hydrated kaolinite in the system with a success rate of 80–90%. The 0.84 nm hydrated kaolinite may become an excellent precursor for the preparation of other kaolinite intercalates. A degree of intercalation of ~100% was obtained for the kaolinite-ethylene glycol intercalate, and a degree of intercalation of ~80% was obtained for the kaolinite-glycine intercalate from the 0.84 nm hydrated kaolinite precursor.
Preschool autistic children represent an important part of preschool education, so we need to create a good material and psychological environment for them. In the preschool education environment, special attention has been focused on the physical and mental health, interests, hobbies, and interpersonal skills training of children with autism. Research has adopted interactive games and behavioral skills training to assist in treating autistic children in preschool education.
Subjects and Methods
Firstly, 8 children diagnosed with autism were selected from a certain kindergarten. These children were evenly distributed across two regular classrooms, with 4 students in each class, and interacted with ordinary children. Next, they were divided into a control group and an experimental group, both of which were ordinary children aged 5-6 years old. Intervention training was conducted to compare the scores of children with autism in various dimensions. Finally, SPSS23.0 was used for data analysis and t-test.
Results
The evaluation of recognition and understanding of children with autism in the control group before and after intervention was t=-0.41, P>0.05, and t=-0.44, P>0.05, respectively, with no statistical significance. The evaluation of the experimental group before and after intervention were t=15.41, P<0.05, and t=69.41, P<0.001, respectively, with statistical significance. Prove the feasibility of intervention training effectiveness.
Conclusions
Interactive training interventions for preschool children with autism are of great help to their physical and mental health and provide strategic solutions for interactive training and skill training for preschool children to promote harmonious coexistence with ordinary children.
The third-order law links energy transfer rates in the inertial range of magneto- hydrodynamic (MHD) turbulence with third-order structure functions. Anisotropy, a typical property in the solar wind, challenges the applicability of the third-order law with the isotropic assumption. To shed light on the energy transfer process in the presence of anisotropy, we conducted direct numerical simulations of forced MHD turbulence with normal and hyper-viscosity under various strengths of the external magnetic field ($B_0$), and calculated three forms of third-order structure function with or without averaging of the azimuthal or polar angles with respect to $B_0$ direction. Correspondingly, three estimated energy transfer rates were obtained. The result shows that the peak of normalized third-order structure function occurs at larger scales closer to the $B_0$ direction, and the maximum of longitudinal transfer rates shifts away from the $B_0$ direction at larger $B_0$. Compared with normal viscous cases, hyper-viscous cases can attain better separated inertial range, thus facilitating the estimation of the energy cascade rates. We find that the widespread use of the isotropic form of the third-order law in estimating the energy transfer rates is questionable in some cases, especially when the anisotropy arising from the mean magnetic field is inevitable. In contrast, the direction-averaged third-order structure function properly accounts for the effect of anisotropy and predicts the energy transfer rates and inertial range accurately, even at very high $B_0$. With limited statistics, the third-order structure function shows a stronger dependence on averaging of azimuthal angles than the time, especially for high $B_0$ cases. These findings provide insights into the anisotropic effect on the estimation of energy transfer rates.
Seed coat colour in adzuki bean is an important quality trait and closely associated with anthocyanin metabolism pathways. To further understand the inheritance of seed coat colour pattern, the inheritance between multiple seed coat colours and ivory seed were analysed using F1:2, F2:3 and F3:4 populations derived from five bi-parental crosses. The differences between ivory and red mottle on ivory are controlled by a single recessive R locus and RI locus, respectively. Green, light brown and golden are all dominant to red and governed by two loci. The B (brown) locus shows dominant epistasis over T locus. The R (red) locus was recessive epistasis to B (black), T (light brown), G (golden), GR (green) and RI (red mottle on ivory) loci. The new insight into the strong recessive epistasis of the R locus will be important for gene mapping and cloning, candidate gene functional validation and quality improvement in adzuki bean.
Data reconstruction of rotating turbulent snapshots is investigated utilizing data-driven tools. This problem is crucial for numerous geophysical applications and fundamental aspects, given the concurrent effects of direct and inverse energy cascades. Additionally, benchmarking of various reconstruction techniques is essential to assess the trade-off between quantitative supremacy, implementation complexity and explicability. In this study, we use linear and nonlinear tools based on the proper orthogonal decomposition (POD) and generative adversarial network (GAN) for reconstructing rotating turbulence snapshots with spatial damages (inpainting). We focus on accurately reproducing both statistical properties and instantaneous velocity fields. Different gap sizes and gap geometries are investigated in order to assess the importance of coherency and multi-scale properties of the missing information. Surprisingly enough, concerning point-wise reconstruction, the nonlinear GAN does not outperform one of the linear POD techniques. On the other hand, the supremacy of the GAN approach is shown when the statistical multi-scale properties are compared. Similarly, extreme events in the gap region are better predicted when using GAN. The balance between point-wise error and statistical properties is controlled by the adversarial ratio, which determines the relative importance of the generator and the discriminator in the GAN training.
Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.
Nonlinear compression has become an obligatory technique along with the development of ultrafast lasers in generating ultrashort pulses with narrow pulse widths and high peak power. In particular, techniques of nonlinear compression have experienced a rapid progress as ytterbium (Yb)-doped lasers with pulse widths in the range from hundreds of femtoseconds to a few picoseconds have become mainstream laser tools for both scientific and industrial applications. Here, we report a simple and stable nonlinear pulse compression technique with high efficiency through cascaded filamentation in air followed by dispersion compensation. Pulses at a center wavelength of 1040 nm with millijoule pulse energy and 160 fs pulse width from a high-power Yb:CaAlGdO4 regenerative amplifier are compressed to 32 fs, with only 2.4% loss from the filamentation process. The compressed pulse has a stable output power with a root-mean-square variation of 0.2% over 1 hour.