We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the advent of COVID-19, adaptation became a norm. Research data-collection methods similarly required adaptation, birthing the use of virtual platforms as first-line data collection tools to adhere to COVID-19 restrictions. This chapter presents an autoethnographic account of virtual qualitative data collection. A PhD candidate shares her experience of conducting individual and focus group interviews virtually in a developing nation. A discussion of the narrative and recommendations for virtual qualitative data collection are provided.
The introduction of digital approaches is perhaps the most significant change to the way that healthcare research is conducted that has been seen since computers first came into use. This introductory chapter will set the tone for the rest of the book. The book is divided into two parts: 1. digital platforms, and 2. approaches to healthcare research that are either uniquely digital or are adaptations of existing approaches to the online context. Within each of these parts, a collection of chapters by distinguished and rising authors present digital platforms and techniques and consider these as applied to a wide range of healthcare studies. This introduction will consider the broad area that the book addresses and will similarly be divided into the same two sections. The unique aspects of digital research approaches will be highlighted and emphasised, and the reader will be prepared for the chapters that follow.
Experimental studies of the influence of fluid–structure interaction on cloud cavitation about a stiff stainless steel (SS) and a flexible composite (CF) hydrofoil have been presented in Parts I (Smith et al., J. Fluid Mech., vol. 896, 2020a, p. A1) and II (Smith et al., J. Fluid Mech., vol. 897, 2020b, p. A28). This work further analyses the data and complements the measurements with reduced-order model predictions to explain the complex response. A two degrees-of-freedom steady-state model is used to explain why the tip bending and twisting deformations are much higher for the CF hydrofoil, while the hydrodynamic load coefficients are very similar. A one degree-of-freedom dynamic model, which considers the spanwise bending deflection only, is used to capture the dynamic response of both hydrofoils. Peaks in the frequency response spectrum are observed at the re-entrant jet-driven and shock-wave-driven cavity shedding frequencies, system bending frequency and heterodyne frequencies caused by the mixing of the two cavity shedding frequencies. The predictions capture the increase of the mean system bending frequency and wider bandwidth of frequency modulation with decreasing cavitation number. The results show that, in general, the amplitude of the deformation fluctuation is higher, but the amplitude of the load fluctuation is lower for the CF hydrofoil compared with the SS hydrofoil. Significant dynamic load amplification is observed at subharmonic lock-in when the shock-wave-driven cavity shedding frequency matches with the nearest subharmonic of the system bending frequency of the CF hydrofoil. Both measurements and predictions show an absence of dynamic load amplification at primary lock-in because of the low intensity of cavity load fluctuations with high cavitation number.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
During the 2018/19 Antarctic field season, the British Antarctic Survey (BAS) Basal conditions on Rutford Ice Stream: BEd Access, Monitoring and Ice Sheet History’ (BEAMISH) project drilled three holes through the Rutford Ice Stream, West Antarctica. At up to 2154 m, these are the deepest hot water drilled subglacial access holes yet created, enabling the recovery of sediment from the subglacial environment, and instrumenting the ice stream and its bed. The BEAMISH hot-water drill system was built on extensive experience with the BAS ice shelf hot-water drill and utilises many identical components. With up to 1 MW of heating power available, the hot water drill produces 140 L min−1 of water at 85°C to create a 300 mm diameter access hole to the base of the ice stream. New systems and processes were developed for BEAMISH to aid critical aspects of deep access drilling, most notably the creation of cavities interlinking boreholes at 230 m below the surface and enabling water recirculation throughout the deep drilling operations. The modular design of the BEAMISH drill offers many benefits in its adaptability, redundancy, and minimal logistical footprint. These design features can easily accommodate the modifications needed for future deep, clean access hole creation in the exploration of subglacial environments.
The influence of fluid–structure interaction on cloud cavitation about a hydrofoil is investigated by comparing results from a relatively stiff reference hydrofoil, presented in Part 1, with those obtained on a geometrically identical flexible hydrofoil. Measurementswere conducted with a chord-based Reynolds number $Re=0.8\times 10^{6}$ for cavitation numbers, $\unicode[STIX]{x1D70E}$, ranging from 0.2 to 1.2 while the hydrofoil was mounted at an incidence, $\unicode[STIX]{x1D6FC}$, of $6^{\circ }$ to the oncoming flow. Tip deformations and cavitation behaviour were recorded with synchronised force measurements utilising two high-speed cameras. The flexible composite hydrofoil was manufactured as a carbon/glass-epoxy hybrid structure with a lay-up sequence selected principally to consider spanwise bending deformations with no material-induced bend–twist coupling. Hydrodynamic bend–twist coupling is seen to result in nose-up twist deformations causing frequency modulation from the increase in cavity length. The lock-in phenomenon driven by re-entrant jet shedding observed on the stiff hydrofoil is also evident on the flexible hydrofoil at $0.70\leqslant \unicode[STIX]{x1D70E}\leqslant 0.75$, but occurs between different modes. Flexibility is observed to accelerate cavitation regime transition with reducing $\unicode[STIX]{x1D70E}$. This is seen with the rapid growth and influence the shockwave instability has on the forces, deflections and cavitation behaviour on the flexible hydrofoil, suggesting structural behaviour plays a significant role in modifying cavity physics. The reduced stiffness causes secondary lock-in of the flexible hydrofoil’s one-quarter sub-harmonic, $f_{n}/4$, at $\unicode[STIX]{x1D70E}$ = 0.4. This leads to the most severe deflections observed in the conditions tested along with a shift in phase between normal force and tip deflection.
The Murchison Widefield Array (MWA) has observed the entire southern sky (Declination, $\delta< 30^{\circ}$) at low radio frequencies, over the range 72–231MHz. These observations constitute the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we use the extragalactic catalogue (EGC) (Galactic latitude, $|b| >10^{\circ}$) to define the GLEAM 4-Jy (G4Jy) Sample. This is a complete sample of the ‘brightest’ radio sources ($S_{\textrm{151\,MHz}}>4\,\text{Jy}$), the majority of which are active galactic nuclei with powerful radio jets. Crucially, low-frequency observations allow the selection of such sources in an orientation-independent way (i.e. minimising the bias caused by Doppler boosting, inherent in high-frequency surveys). We then use higher-resolution radio images, and information at other wavelengths, to morphologically classify the brightest components in GLEAM. We also conduct cross-checks against the literature and perform internal matching, in order to improve sample completeness (which is estimated to be $>95.5$%). This results in a catalogue of 1863 sources, making the G4Jy Sample over 10 times larger than that of the revised Third Cambridge Catalogue of Radio Sources (3CRR; $S_{\textrm{178\,MHz}}>10.9\,\text{Jy}$). Of these G4Jy sources, 78 are resolved by the MWA (Phase-I) synthesised beam ($\sim2$ arcmin at 200MHz), and we label 67% of the sample as ‘single’, 26% as ‘double’, 4% as ‘triple’, and 3% as having ‘complex’ morphology at $\sim1\,\text{GHz}$ (45 arcsec resolution). We characterise the spectral behaviour of these objects in the radio and find that the median spectral index is $\alpha=-0.740 \pm 0.012$ between 151 and 843MHz, and $\alpha=-0.786 \pm 0.006$ between 151MHz and 1400MHz (assuming a power-law description, $S_{\nu} \propto \nu^{\alpha}$), compared to $\alpha=-0.829 \pm 0.006$ within the GLEAM band. Alongside this, our value-added catalogue provides mid-infrared source associations (subject to 6” resolution at 3.4$\mu$m) for the radio emission, as identified through visual inspection and thorough checks against the literature. As such, the G4Jy Sample can be used as a reliable training set for cross-identification via machine-learning algorithms. We also estimate the angular size of the sources, based on their associated components at $\sim1\,\text{GHz}$, and perform a flux density comparison for 67 G4Jy sources that overlap with 3CRR. Analysis of multi-wavelength data, and spectral curvature between 72MHz and 20GHz, will be presented in subsequent papers, and details for accessing all G4Jy overlays are provided at https://github.com/svw26/G4Jy.
The entire southern sky (Declination, $\delta< 30^{\circ}$) has been observed using the Murchison Widefield Array (MWA), which provides radio imaging of $\sim$2 arcmin resolution at low frequencies (72–231 MHz). This is the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we have previously used a combination of visual inspection, cross-checks against the literature, and internal matching to identify the ‘brightest’ radio-sources ($S_{\mathrm{151\,MHz}}>4$ Jy) in the extragalactic catalogue (Galactic latitude, $|b| >10^{\circ}$). We refer to these 1 863 sources as the GLEAM 4-Jy (G4Jy) Sample, and use radio images (of ${\leq}45$ arcsec resolution), and multi-wavelength information, to assess their morphology and identify the galaxy that is hosting the radio emission (where appropriate). Details of how to access all of the overlays used for this work are available at https://github.com/svw26/G4Jy. Alongside this we conduct further checks against the literature, which we document here for individual sources. Whilst the vast majority of the G4Jy Sample are active galactic nuclei with powerful radio-jets, we highlight that it also contains a nebula, two nearby, star-forming galaxies, a cluster relic, and a cluster halo. There are also three extended sources for which we are unable to infer the mechanism that gives rise to the low-frequency emission. In the G4Jy catalogue we provide mid-infrared identifications for 86% of the sources, and flag the remainder as: having an uncertain identification (129 sources), having a faint/uncharacterised mid-infrared host (126 sources), or it being inappropriate to specify a host (2 sources). For the subset of 129 sources, there is ambiguity concerning candidate host-galaxies, and this includes four sources (B0424–728, B0703–451, 3C 198, and 3C 403.1) where we question the existing identification.
The physics associated with various cavitation regimes about a hydrofoil is investigated in a variable-pressure water tunnel using high-speed photography and synchronised force measurements. Experiments were conducted on a relatively stiff stainless steel hydrofoil at a chord-based Reynolds number, $Re=0.8\times 10^{6}$ for cavitation numbers, $\unicode[STIX]{x1D70E}$, ranging from 0.2 to 1.2, with the hydrofoil experiencing sheet, cloud and supercavitation regimes. The NACA0009 model of tapered planform was vertically mounted in a cantilevered configuration to a six-component force balance at an incidence, $\unicode[STIX]{x1D6FC}$, of $6^{\circ }$ to the oncoming flow. Tip deformations and cavitation behaviour were recorded with synchronised force measurements utilising two high-speed cameras mounted underneath and to the side of the test section. Break-up and shedding of an attached cavity was found to be due to either interfacial instabilities, re-entrant jet formation, shockwave propagation or a complex coupled mechanism, depending on $\unicode[STIX]{x1D70E}$. Three primary shedding modes are identified. The Type IIa and IIb re-entrant jet-driven oscillations exhibit a non-linear dependence on $\unicode[STIX]{x1D70E}$, decreasing in frequency with decreasing $\unicode[STIX]{x1D70E}$ due to growth in the cavity length, and occur at higher $\unicode[STIX]{x1D70E}$ values (Type IIa: 0.4–1.0; Type IIb: 0.7–0.9). Shockwave-driven Type I shedding occurs for lower $\unicode[STIX]{x1D70E}$ values (0.3–0.6) with the oscillation frequency being practically independent of $\unicode[STIX]{x1D70E}$. The Type IIa oscillations locked in to the first sub-harmonic of the hydrofoil’s first bending mode in water which has been modulated due to the reduced added mass of the vapour cavity. Supplementary movies are available with the online version of the paper.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (${\sim}60\%$), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
Different diagnostic interviews are used as reference standards for major depression classification in research. Semi-structured interviews involve clinical judgement, whereas fully structured interviews are completely scripted. The Mini International Neuropsychiatric Interview (MINI), a brief fully structured interview, is also sometimes used. It is not known whether interview method is associated with probability of major depression classification.
Aims
To evaluate the association between interview method and odds of major depression classification, controlling for depressive symptom scores and participant characteristics.
Method
Data collected for an individual participant data meta-analysis of Patient Health Questionnaire-9 (PHQ-9) diagnostic accuracy were analysed and binomial generalised linear mixed models were fit.
Results
A total of 17 158 participants (2287 with major depression) from 57 primary studies were analysed. Among fully structured interviews, odds of major depression were higher for the MINI compared with the Composite International Diagnostic Interview (CIDI) (odds ratio (OR) = 2.10; 95% CI = 1.15–3.87). Compared with semi-structured interviews, fully structured interviews (MINI excluded) were non-significantly more likely to classify participants with low-level depressive symptoms (PHQ-9 scores ≤6) as having major depression (OR = 3.13; 95% CI = 0.98–10.00), similarly likely for moderate-level symptoms (PHQ-9 scores 7–15) (OR = 0.96; 95% CI = 0.56–1.66) and significantly less likely for high-level symptoms (PHQ-9 scores ≥16) (OR = 0.50; 95% CI = 0.26–0.97).
Conclusions
The MINI may identify more people as depressed than the CIDI, and semi-structured and fully structured interviews may not be interchangeable methods, but these results should be replicated.
Declaration of interest
Drs Jetté and Patten declare that they received a grant, outside the submitted work, from the Hotchkiss Brain Institute, which was jointly funded by the Institute and Pfizer. Pfizer was the original sponsor of the development of the PHQ-9, which is now in the public domain. Dr Chan is a steering committee member or consultant of Astra Zeneca, Bayer, Lilly, MSD and Pfizer. She has received sponsorships and honorarium for giving lectures and providing consultancy and her affiliated institution has received research grants from these companies. Dr Hegerl declares that within the past 3 years, he was an advisory board member for Lundbeck, Servier and Otsuka Pharma; a consultant for Bayer Pharma; and a speaker for Medice Arzneimittel, Novartis, and Roche Pharma, all outside the submitted work. Dr Inagaki declares that he has received grants from Novartis Pharma, lecture fees from Pfizer, Mochida, Shionogi, Sumitomo Dainippon Pharma, Daiichi-Sankyo, Meiji Seika and Takeda, and royalties from Nippon Hyoron Sha, Nanzando, Seiwa Shoten, Igaku-shoin and Technomics, all outside of the submitted work. Dr Yamada reports personal fees from Meiji Seika Pharma Co., Ltd., MSD K.K., Asahi Kasei Pharma Corporation, Seishin Shobo, Seiwa Shoten Co., Ltd., Igaku-shoin Ltd., Chugai Igakusha and Sentan Igakusha, all outside the submitted work. All other authors declare no competing interests. No funder had any role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.
Many studies of teacher motivation have been conducted in different contexts over time. However, until fairly recently there has not been a reliable measure available to allow comparisons across samples and settings. This has resulted in an abundance of findings which cannot be directly compared or synthesised. The FIT-Choice instrument offers the opportunity to examine motivations across settings. The various studies in this book suggest that people who choose teaching as a career are motivated by a complex interaction of factors embedded within communities and cultural expectations, but seem generally to embrace a desire to undertake meaningful work that makes for a better society. Unlike some careers, where rewards are in the form of salary and status, by and large these factors are not strong drivers for people who want to become teachers. They want to work with children and adolescents, and believe they have the ability to teach.