We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study actions of higher rank lattices $\Gamma <G$ on hyperbolic spaces and we show that all such actions satisfying mild properties come from the rank-one factors of G. In particular, all non-elementary isometric actions on an unbounded hyperbolic space are of this type.
We study lattices in a product $G=G_{1}\times \cdots \times G_{n}$ of non-discrete, compactly generated, totally disconnected locally compact (tdlc) groups. We assume that each factor is quasi just-non-compact, meaning that $G_{i}$ is non-compact and every closed normal subgroup of $G_{i}$ is discrete or cocompact (e.g. $G_{i}$ is topologically simple). We show that the set of discrete subgroups of $G$ containing a fixed cocompact lattice $\unicode[STIX]{x1D6E4}$ with dense projections is finite. The same result holds if $\unicode[STIX]{x1D6E4}$ is non-uniform, provided $G$ has Kazhdan’s property (T). We show that for any compact subset $K\subset G$, the collection of discrete subgroups $\unicode[STIX]{x1D6E4}\leqslant G$ with $G=\unicode[STIX]{x1D6E4}K$ and dense projections is uniformly discrete and hence of covolume bounded away from $0$. When the ambient group $G$ is compactly presented, we show in addition that the collection of those lattices falls into finitely many $\operatorname{Aut}(G)$-orbits. As an application, we establish finiteness results for discrete groups acting on products of locally finite graphs with semiprimitive local action on each factor. We also present several intermediate results of independent interest. Notably it is shown that if a non-discrete, compactly generated quasi just-non-compact tdlc group $G$ is a Chabauty limit of discrete subgroups, then some compact open subgroup of $G$ is an infinitely generated pro-$p$ group for some prime $p$. It is also shown that in any Kazhdan group with discrete amenable radical, the lattices form an open subset of the Chabauty space of closed subgroups.
The residual closure of a subgroup H of a group G is the intersection of all virtually normal subgroups of G containing H. We show that if G is generated by finitely many cosets of H and if H is commensurated, then the residual closure of H in G is virtually normal. This implies that separable commensurated subgroups of finitely generated groups are virtually normal. A stream of applications to separable subgroups, polycyclic groups, residually finite groups, groups acting on trees, lattices in products of trees and just-infinite groups then flows from this main result.
These notes are devoted to lattices in products of trees and related topics. They provide an introduction to the construction, by M. Burger and S. Mozes, of examples of such lattices that are simple as abstract groups. Two features of that construction are emphasized: the relevance of non-discrete locally compact groups, and the two-step strategy in the proof of simplicity, addressing separately, and with completely different methods, the existence of finite and infinite quotients. A brief history of the quest for finitely generated and finitely presented infinite simple groups is also sketched. A comparison with Margulis’ proof of Kneser’s simplicity conjecture is discussed, and the relevance of the Classification of the Finite Simple Groups is pointed out. A final chapter is devoted to finite and infinite quotients of hyperbolic groups and their relation to the asymptotic properties of the finite simple groups. Numerous open problems are discussed along the way.
Let $T$ be a locally finite tree without vertices of degree $1$. We show that among the closed subgroups of $\text{Aut}(T)$ acting with a bounded number of orbits, the Chabauty-closure of the set of topologically simple groups is the set of groups without proper open subgroup of finite index. Moreover, if all vertices of $T$ have degree ${\geqslant}3$, then the set of isomorphism classes of topologically simple closed subgroups of $\text{Aut}(T)$ acting doubly transitively on $\unicode[STIX]{x2202}T$ carries a natural compact Hausdorff topology inherited from Chabauty. Some of our considerations are valid in the context of automorphism groups of locally finite connected graphs. Applications to Weyl-transitive automorphism groups of buildings are also presented.
This collection of expository articles by a range of established experts and newer researchers provides an overview of the recent developments in the theory of locally compact groups. It includes introductory articles on totally disconnected locally compact groups, profinite groups, p-adic Lie groups and the metric geometry of locally compact groups. Concrete examples, including groups acting on trees and Neretin groups, are discussed in detail. An outline of the emerging structure theory of locally compact groups beyond the connected case is presented through three complementary approaches: Willis' theory of the scale function, global decompositions by means of subnormal series, and the local approach relying on the structure lattice. An introduction to lattices, invariant random subgroups and L2-invariants, and a brief account of the Burger–Mozes construction of simple lattices are also included. A final chapter collects various problems suggesting future research directions.
We use the structure lattice, introduced in Part I, to undertake a systematic study of the class $\mathscr{S}$ consisting of compactly generated, topologically simple, totally disconnected locally compact groups that are nondiscrete. Given $G\in \mathscr{S}$, we show that compact open subgroups of $G$ involve finitely many isomorphism types of composition factors, and do not have any soluble normal subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and local decomposition lattice of $G$ are Boolean algebras. We show that the $G$-action on the Stone space of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those results, we obtain partial answers to the following key problems: Are all groups in $\mathscr{S}$ abstractly simple? Can a group in $\mathscr{S}$ be amenable? Can a group in $\mathscr{S}$ be such that the contraction groups of all of its elements are trivial?
Let $G$ be a totally disconnected, locally compact group. A closed subgroup of $G$ is locally normal if its normalizer is open in $G$. We begin an investigation of the structure of the family of closed locally normal subgroups of $G$. Modulo commensurability, this family forms a modular lattice ${\mathcal{L}}{\mathcal{N}}(G)$, called the structure lattice of $G$. We show that $G$ admits a canonical maximal quotient $H$ for which the quasicentre and the abelian locally normal subgroups are trivial. In this situation ${\mathcal{L}}{\mathcal{N}}(H)$ has a canonical subset called the centralizer lattice, forming a Boolean algebra whose elements correspond to centralizers of locally normal subgroups. If $H$ is second-countable and acts faithfully on its centralizer lattice, we show that the topology of $H$ is determined by its algebraic structure (and thus invariant by every abstract group automorphism), and also that the action on the Stone space of the centralizer lattice is universal for a class of actions on profinite spaces. Most of the material is developed in the more general framework of Hecke pairs.
Let $G$ be a locally compact group acting properly, by type-preserving automorphisms on a locally finite thick Euclidean building $\Delta $, and $K$ be the stabilizer of a special vertex in $\Delta $. It is known that $(G, K)$ is a Gelfand pair as soon as $G$ acts strongly transitively on $\Delta $; in particular, this is the case when $G$ is a semi-simple algebraic group over a local field. We show a converse to this statement, namely that if $(G, K)$ is a Gelfand pair and $G$ acts cocompactly on $\Delta $, then the action is strongly transitive. The proof uses the existence of strongly regular hyperbolic elements in $G$ and their peculiar dynamics on the spherical building at infinity. Other equivalent formulations are also obtained, including the fact that $G$ is strongly transitive on $\Delta $ if and only if it is strongly transitive on the spherical building at infinity.
We present a contribution to the structure theory of locally compact groups. The emphasis is on compactly generated locally compact groups which admit no infinite discrete quotient. It is shown that such a group possesses a characteristic cocompact subgroup which is either connected or admits a non-compact non-discrete topologically simple quotient. We also provide a description of characteristically simple groups and of groups all of whose proper quotients are compact. We show that Noetherian locally compact groups without infinite discrete quotient admit a subnormal series with all subquotients compact, compactly generated Abelian, or compactly generated topologically simple.
Two appendices introduce results and examples around the concept of quasi-product.
Given a complete $\text{CAT}(0)$ space $X$ endowed with a geometric action of a group $\Gamma $, it is known that if $\Gamma $ contains a free abelian group of rank $n$, then $X$ contains a geometric flat of dimension $n$. We prove the converse of this statement in the special case where $X$ is a convex subcomplex of the $\text{CAT}(0)$ realization of a Coxeter group $W$, and $\Gamma $ is a subgroup of $W$. In particular a convex cocompact subgroup of a Coxeter group is Gromov-hyperbolic if and only if it does not contain a free abelian group of rank 2. Our result also provides an explicit control on geometric flats in the $\text{CAT}(0)$ realization of arbitrary Tits buildings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.