We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Childhood bullying is a public health priority. We evaluated the effectiveness and costs of KiVa, a whole-school anti-bullying program that targets the peer context.
Methods
A two-arm pragmatic multicenter cluster randomized controlled trial with embedded economic evaluation. Schools were randomized to KiVa-intervention or usual practice (UP), stratified on school size and Free School Meals eligibility. KiVa was delivered by trained teachers across one school year. Follow-up was at 12 months post randomization. Primary outcome: student-reported bullying-victimization; secondary outcomes: self-reported bullying-perpetration, participant roles in bullying, empathy and teacher-reported Strengths and Difficulties Questionnaire. Outcomes were analyzed using multilevel linear and logistic regression models.
Findings
Between 8/11/2019–12/02/2021, 118 primary schools were recruited in four trial sites, 11 111 students in primary analysis (KiVa-intervention: n = 5944; 49.6% female; UP: n = 5167, 49.0% female). At baseline, 21.6% of students reported being bullied in the UP group and 20.3% in the KiVa-intervention group, reducing to 20.7% in the UP group and 17.7% in the KiVa-intervention group at follow-up (odds ratio 0.87; 95% confidence interval 0.78 to 0.97, p value = 0.009). Students in the KiVa group had significantly higher empathy and reduced peer problems. We found no differences in bullying perpetration, school wellbeing, emotional or behavioral problems. A priori subgroup analyses revealed no differences in effectiveness by socioeconomic gradient, or by gender. KiVa costs £20.78 more per pupil than usual practice in the first year, and £1.65 more per pupil in subsequent years.
Interpretation
The KiVa anti-bullying program is effective at reducing bullying victimization with small-moderate effects of public health importance.
Funding
The study was funded by the UK National Institute for Health and Care Research (NIHR) Public Health Research program (17-92-11). Intervention costs were funded by the Rayne Foundation, GwE North Wales Regional School Improvement Service, Children's Services, Devon County Council and HSBC Global Services (UK) Ltd.
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
from
Chapter 13
-
Mass Gathering Events: Motor Sport Events
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
from
Chapter 13
-
Mass Gathering Events: Motor Sport Events
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
from
Chapter 13
-
Mass Gathering Events: Motor Sport Events
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
Edited by
William J. Brady, University of Virginia,Mark R. Sochor, University of Virginia,Paul E. Pepe, Metropolitan EMS Medical Directors Global Alliance, Florida,John C. Maino II, Michigan International Speedway, Brooklyn,K. Sophia Dyer, Boston University Chobanian and Avedisian School of Medicine, Massachusetts
Mass medical deployments to large events, such as music festivals or sporting events, are increasing in number, size, and complexity. This textbook provides guidance and direction for rational, effective, and practical medical management of mass gathering events for medical leaders. This is the first authoritative text on mass event medicine, filling a much-needed gap in a large and important area of the specialty. An international group of contributors introduce the specialty and cover topics such as general deployment, staffing, equipment, and resources, moving on to more complex issues such as the business aspect of mass gathering medicine and the legal implications. There are also practical chapters on specific types of events and adverse events such as terrorism, severe weather, and civil disobedience. An invaluable text for all healthcare professionals planning for and attending mass events, particularly EMS professionals, large event planners and administrators, and law enforcement and security personnel.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current approximation of the Maxwell system becomes large, is important for improving current metal detection technologies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current model also depends on the object topology and on its materials, with the error being much larger for certain geometries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this, we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations to be important when considering objects at greater stand-off distance from the coils, which is important for safety critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We also expect our results to be important when characterising artefacts of archaeological and forensic significance at greater depths than the eddy current model allows and to have further applications parking sensors and improving the detection of hidden, out-of-sight, metallic objects.
Prior trials suggest that intravenous racemic ketamine is a highly effective for treatment-resistant depression (TRD), but phase 3 trials of racemic ketamine are needed.
Aims
To assess the acute efficacy and safety of a 4-week course of subcutaneous racemic ketamine in participants with TRD. Trial registration: ACTRN12616001096448 at www.anzctr.org.au.
Method
This phase 3, double-blind, randomised, active-controlled multicentre trial was conducted at seven mood disorders centres in Australia and New Zealand. Participants received twice-weekly subcutaneous racemic ketamine or midazolam for 4 weeks. Initially, the trial tested fixed-dose ketamine 0.5 mg/kg versus midazolam 0.025 mg/kg (cohort 1). Dosing was revised, after a Data Safety Monitoring Board recommendation, to flexible-dose ketamine 0.5–0.9 mg/kg or midazolam 0.025–0.045 mg/kg, with response-guided dosing increments (cohort 2). The primary outcome was remission (Montgomery-Åsberg Rating Scale for Depression score ≤10) at the end of week 4.
Results
The final analysis (those who received at least one treatment) comprised 68 in cohort 1 (fixed-dose), 106 in cohort 2 (flexible-dose). Ketamine was more efficacious than midazolam in cohort 2 (remission rate 19.6% v. 2.0%; OR = 12.1, 95% CI 2.1–69.2, P = 0.005), but not different in cohort 1 (remission rate 6.3% v. 8.8%; OR = 1.3, 95% CI 0.2–8.2, P = 0.76). Ketamine was well tolerated. Acute adverse effects (psychotomimetic, blood pressure increases) resolved within 2 h.
Conclusions
Adequately dosed subcutaneous racemic ketamine was efficacious and safe in treating TRD over a 4-week treatment period. The subcutaneous route is practical and feasible.
We present new data from the debris-rich basal ice layers of the NEEM ice core (NW Greenland). Using mineralogical observations, SEM imagery, geochemical data from silicates (meteoric 10Be, εNd, 87Sr/86Sr) and organic material (C/N, δ13C), we characterize the source material, succession of previous glaciations and deglaciations and the paleoecological conditions during ice-free episodes. Meteoric 10Be data and grain features indicate that the ice sheet interacted with paleosols and eroded fresh bedrock, leading to mixing in these debris-rich ice layers. Our analysis also identifies four successive stages in NW Greenland: (1) initial preglacial conditions, (2) glacial advance 1, (3) glacial retreat and interglacial conditions and (4) glacial advance 2 (current ice-sheet development). C/N and δ13C data suggest that deglacial environments favored the development of tundra and taiga ecosystems. These two successive glacial fluctuations observed at NEEM are consistent with those identified from the Camp Century core basal sediments over the last 3 Ma. Further inland, GRIP and GISP2 summit sites have remained glaciated more continuously than the western margin, with less intense ice-substratum interactions than those observed at NEEM.