We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new formulation of pyroxasulfone + encapsulated saflufenacil has been developed. Combining these two herbicides extends the application window to early postemergence. Pyroxasulfone, saflufenacil (suspension concentrate), and pyroxasulfone + encapsulated saflufenacil (microcapsule suspension) were applied to corn preemergence and evaluated for corn injury, corn yield, and visible weed control; in addition, the interaction (antagonistic, additive, or synergistic) was ascertained for each parameter. Six field trials were conducted at three locations in southwestern Ontario in 2022 and 2023. Pyroxasulfone was applied at 90, 120, and 150 g ai ha−1; saflufenacil was applied at 56, 75, and 95 g ai ha−1; and pyroxasulfone + encapsulated saflufenacil was applied at 146, 195, 245 g ai ha−1, equal to the combined rates of pyroxasulfone and saflufenacil. All pyroxasulfone, encapsulated saflufenacil, and pyroxasulfone + encapsulated saflufenacil treatments caused no corn injury. Weed control varied based on application rate and weed species. Reduced weed interference with pyroxasulfone + encapsulated saflufenacil at 195 and 245 g ai ha−1 resulted in corn yield that was similar to the weed-free control and the industry standard of S-metolachlor/atrazine/mesotrione/bicyclopyrone. The interaction between pyroxasulfone and encapsulated saflufenacil for weed control was additive.
Objectives/Goals: The goal of the RC2 Systems Marketing Analysis for Research Translation (SMART) special innovation program is to develop and test a structured approach for working with research teams and communities to accelerate the translation of clinical and community innovations to address health inequities by integrating social marketing with community-based system dynamics. Methods/Study Population: The SMART program is a consultancy service for CTS teams focused on selecting and tailoring implementation strategies for advancing equity. We use social marketing for understanding the alignment of practice innovation feature sets with community priorities for advancing health equity; and community-based system dynamics to understand and refine the dynamics of scaling up and sustaining the implementation of innovations with sufficient reach to address regional health inequities. The program is implemented as community-engaged group model-building workshops with research teams, with follow-up marketing analyses and computer simulation of implementation strategies of innovations and development of implementation roadmaps. We use developmental program evaluation to revise the SMART program. Results/Anticipated Results: Anticipated results from piloting the SMART innovation program with four research teams include (1) design matrices pre and post-workshop for each innovation; (2) system dynamics simulation models and analyses of implementation and scale-up of innovations; (3) analysis of the SMART program for highest impact, with priors for estimating subsequent SMART program performance; and (4) a revised SMART program based on results from the developmental program evaluation. Discussion/Significance of Impact: This work highlights the feasibility and benefits of combining methods that have been cited in implementation science for understanding the complexity of implementation to accelerate the translation of innovations into clinical and community settings for advancing health equity.
Co-occurring self-harm and aggression (dual harm) is particularly prevalent among forensic mental health service (FMHS) patients. There is limited understanding of why this population engages in dual harm.
Aims
This work aims to explore FMHS patients’ experiences of dual harm and how they make sense of this behaviour, with a focus on the role of emotions.
Method
Participants were identified from their participation in a previous study. Sixteen FMHS patients with a lifetime history of dual harm were recruited from two hospitals. Individuals participated in one-to-one, semi-structured interviews where they reflected on past and/or current self-harm and aggression. Interview transcripts were analysed using reflexive thematic analysis.
Results
Six themes were generated: self-harm and aggression as emotional regulation strategies, the consequences of witnessing harmful behaviours, relationships with others and the self, trapped within the criminal justice system, the convergence and divergence of self-harm and aggression, and moving forward as an FMHS patient. Themes highlighted shared risk factors of dual harm across participants, including emotional dysregulation, perceived lack of social support and witnessing harmful behaviours. Participants underlined the duality of their self-harm and aggression, primarily utilising both to regulate negative emotions. These behaviours also fulfilled distinct purposes at times (e.g. self-harm as punishment, aggression as defence). The impact of contextual factors within FMHSs, including restrictive practices and institutionalisation, were emphasised.
Conclusions
Findings provide recommendations that can help address dual harm within forensic settings, including (a) transdiagnostic, individualised approaches that consider the duality of self-harm and aggression; and (b) cultural and organisational focus on recovery-centred practice.
Following the application of MCPA/MCPB at 1.7 kg ae ha−1 at a field site near Dresden, ON, Canada, poor control (<50% visible control) of green pigweed (Amaranthus powellii S. Watson) was observed. Amaranthus powellii is a common weed in Ontario crop production, and its evolution of resistance to synthetic auxin herbicides (SAHs) could pose a risk to crop yields. The suspected resistant A. powellii population (R) was used in dose–response and field experiments to determine resistance to SAHs. The objective of these studies was to determine whether this population of A. powellii is resistant to MCPA and cross-resistant to other SAHs. The GR50 (herbicide dose that causes a 50% reduction in plant aboveground biomass) values were determined by fitting plant dry weight data, obtained following application with seven SAHs, to a four-parameter log-logistic equation and were compared between the suspected-resistant (R) population and a known susceptible (S) population of A. powellii. The field trial was conducted in 2017, 2018, 2019, and 2021 in corn (Zea mays L.) and consisted of 11 postemergence SAH treatments. The GR50 values differed between the R and S populations following application with MCPA, aminocyclopyrachlor, dichlorprop-p, and mecoprop, resulting in resistance factors of 4.4, 3.0, 2.5, and 2.4, respectively. In the field study, dicamba and MCPA ester controlled A. powellii 84% and 30%, respectively, at 8 wk after treatment application (WAA). The control of Amaranthus powellii with all SAHs applied POST in corn was poor (<90% visible control) at 8 WAA. Both studies confirmed resistance to SAHs in this population of A. powellii, which will create limitations for farmers aiming to control this weed.
This chapter begins by arguing that debates about whether a poem can be translated reflect debates about the nature of the poem itself. Those who assert that poetry is untranslatable, for example, tend to believe that every poem is a unique event in a specific language. Conversely, those who assert the importance of translation tend to see poems as existing, and as having their meanings, only in relation to other poems or art forms. Considering examples from Roy Fisher, Friedrich Hölderlin, Vittorio Sereni, Jean-Joseph Rabéarivelo, César Vallejo, Donald Justice, Elizabeth Bishop, and Frank O’Hara, the chapter demonstrates that in practice, both these conceptual positions are essential. It explores how the practice of translation generates networks of mutually referential identities over time, and it suggests that, more broadly, the emergence of the abstraction known as “the poem” depends on its relation to such interconnections between poems, poets, and translations, ones that may be shaped by imitation, parody, homage, and adaptation.
Waterhemp has evolved resistance to Group 2, 5, 9, 14, and 27 herbicides in Ontario, Canada, making control of this challenging weed even more difficult. Acetochlor is a Group 15, chloroacetanilide herbicide that has activity on many small-seeded annual grasses and some small-seeded annual broadleaf weeds, including waterhemp. The objective of this study was to ascertain if acetochlor mixtures with broadleaf herbicides (dicamba, metribuzin, diflufenican, sulfentrazone, or flumioxazin), applied preemergence (PRE), increase multiple-herbicide-resistant (MHR) waterhemp control in soybean. Five trials were conducted over 2 yr (2021 and 2022). The acetochlor mixtures caused ≤7% soybean injury, except acetochlor + flumioxazin, which caused 19% soybean injury. Acetochlor applied PRE controlled MHR waterhemp 89% at 4 wk after application (WAA). Dicamba, metribuzin, diflufenican, sulfentrazone, or flumioxazin controlled MHR waterhemp 59%, 67%, 58%, 64%, and 86%, respectively, at 4 WAA. Acetochlor applied in a mixture with dicamba, metribuzin, diflufenican, sulfentrazone, or flumioxazin provided good to excellent control of MHR waterhemp; control ranged from 91% to 98% but was similar to acetochlor applied alone. Acetochlor alone reduced MHR waterhemp density and biomass 98% and 93%; acetochlor + flumioxazin reduced waterhemp density and biomass by an additional 2% and 7%, respectively. This research concludes that acetochlor applied in a mixture with flumioxazin was the most efficacious mixture evaluated for MHR waterhemp control.
Waterhemp is a summer annual, broadleaf weed with high fecundity, short seed longevity in the soil, and wide genetic diversity. Populations have evolved resistance to five herbicide modes of action (Groups 2, 5, 9, 14, and 27), which are present across southern Ontario; this has increased the challenge of controlling this competitive weed species in corn, the most important grain crop produced worldwide and the highest-value agronomic crop in Ontario. Acetochlor is a Group 15 soil-applied residual herbicide that has activity on many grass and broadleaf weeds but has yet to be registered in Canada. The objective of this study was to ascertain whether mixtures of acetochlor with flumetsulam, dicamba, atrazine, isoxaflutole/diflufenican, or mesotrione + atrazine applied preemergence would increase the control of multiple-herbicide-resistant (MHR) waterhemp in corn. Five field trials were conducted between 2022 and 2023. No corn injury was observed. Acetochlor applied alone controlled MHR waterhemp 97% 12 wk after application (WAA). All herbicide mixtures controlled MHR waterhemp similarly at ≥98% 12 WAA; there were no differences among herbicide mixtures. Flumetsulam, dicamba, and atrazine provided lower MHR waterhemp control than all other herbicide treatments and did not reduce density or biomass. Acetochlor reduced waterhemp density 98%, while the acetochlor mixtures reduced density similarly at 99% to 100%. This study concludes that the acetochlor mixtures evaluated provide excellent waterhemp control; however, control was not greater than acetochlor alone. Herbicide mixtures should be used as a best management practice to mitigate the evolution of herbicide resistance.
Suicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify students at risk of suicidal behavior and used telehealth to reduce subsequent risk.
Methods
Data come from several waves of a prospective cohort study (2016–2022) of college students (n = 5454). All first-year students were invited to participate as volunteers. (Response rates range: 16.00–19.93%). A stepped-care approach was implemented: (i) all students received a comprehensive list of services; (ii) those reporting past 12-month suicidal ideation were directed to a safety planning application; (iii) those identified as high risk of suicidal behavior by the algorithm or reporting 12-month suicide attempt were contacted via telephone within 24-h of survey completion. Intervention focused on support/safety-planning, and referral to services for this high-risk group.
Results
5454 students ranging in age from 17–36 (s.d. = 5.346) participated; 65% female. The algorithm identified 77% of students reporting subsequent suicidal behavior in the top 15% of predicted probabilities (Sensitivity = 26.26 [95% CI 17.93–36.07]; Specificity = 97.46 [95% CI 96.21–98.38], PPV = 53.06 [95% CI 40.16–65.56]; AUC range: 0.895 [95% CIs 0.872–0.917] to 0.966 [95% CIs 0.939–0.994]). High-risk students in the Intervention Cohort showed a 41.7% reduction in probability of suicidal behavior at 12-month follow-up compared to high-risk students in the Control Cohort.
Conclusions
Predictive risk algorithms embedded into universal screening, coupled with telehealth intervention, offer significant potential as a suicide prevention approach for students.
Cognitive behavioural therapy (CBT) is an effective treatment for depression but a significant minority of clients do not complete therapy, do not respond to it, or subsequently relapse. Non-responders, and those at risk of relapse, are more likely to have adverse childhood experiences, early-onset depression, co-morbidities, interpersonal problems and heightened risk. This is a heterogeneous group of clients who are currently difficult to treat.
Aim:
The aim was to develop a CBT model of depression that will be effective for difficult-to-treat clients who have not responded to standard CBT.
Method:
The method was to unify theory, evidence and clinical strategies within the field of CBT to develop an integrated CBT model. Single case methods were used to develop the treatment components.
Results:
A self-regulation model of depression has been developed. It proposes that depression is maintained by repeated interactions of self-identity disruption, impaired motivation, disengagement, rumination, intrusive memories and passive life goals. Depression is more difficult to treat when these processes become interlocked. Treatment based on the model builds self-regulation skills and restructures self-identity, rather than target negative beliefs. A bespoke therapy plan is formed out of ten treatment components, based on an individual case formulation.
Conclusions:
A self-regulation model of depression is proposed that integrates theory, evidence and practice within the field of CBT. It has been developed with difficult-to-treat cases as its primary purpose. A case example is described in a concurrent article (Barton et al., 2022) and further empirical tests are on-going.
Rapid antigen detection tests (Ag-RDT) for SARS-CoV-2 with emergency use authorization generally include a condition of authorization to evaluate the test’s performance in asymptomatic individuals when used serially. We aim to describe a novel study design that was used to generate regulatory-quality data to evaluate the serial use of Ag-RDT in detecting SARS-CoV-2 virus among asymptomatic individuals.
Methods:
This prospective cohort study used a siteless, digital approach to assess longitudinal performance of Ag-RDT. Individuals over 2 years old from across the USA with no reported COVID-19 symptoms in the 14 days prior to study enrollment were eligible to enroll in this study. Participants throughout the mainland USA were enrolled through a digital platform between October 18, 2021 and February 15, 2022. Participants were asked to test using Ag-RDT and molecular comparators every 48 hours for 15 days. Enrollment demographics, geographic distribution, and SARS-CoV-2 infection rates are reported.
Key Results:
A total of 7361 participants enrolled in the study, and 492 participants tested positive for SARS-CoV-2, including 154 who were asymptomatic and tested negative to start the study. This exceeded the initial enrollment goals of 60 positive participants. We enrolled participants from 44 US states, and geographic distribution of participants shifted in accordance with the changing COVID-19 prevalence nationwide.
Conclusions:
The digital site-less approach employed in the “Test Us At Home” study enabled rapid, efficient, and rigorous evaluation of rapid diagnostics for COVID-19 and can be adapted across research disciplines to optimize study enrollment and accessibility.
Waterhemp has evolved resistance to seven herbicide modes of action in the United States and to five in Canada, which limits weed control options for producers. The objective of this research was to quantify the level and duration of residual control of multiple herbicide-resistant (MHR) waterhemp with five Group 15 herbicides (acetochlor, dimethenamid-p, flufenacet, pyroxasulfone, and S-metolachlor) applied preemergence in a non-crop area. Four field trials were conducted over a 2-yr period (2021, 2022) in southwestern Ontario, Canada. By 4 wk after application (WAA) 91% of waterhemp had emerged in the nontreated control area. The numerical control of waterhemp with all Group 15 herbicides, with the exception of pyroxasulfone, was greatest at 4 WAA, then control declined. Flufenacet provided the lowest waterhemp control; dimethenamid-p and S-metolachlor provided intermediate control, and acetochlor and pyroxasulfone provided the highest control. Waterhemp control with pyroxasulfone peaked at 6 WAA with 99% and declined to 77% at 12 WAA. Flufenacet (low and high rates) was predicted to reduce waterhemp emergence by 50% for 42 to 44 d after application (DAA). Dimethenamid-p, S-metolachlor, and acetochlor (both formulations and three rates) were predicted to reduce waterhemp emergence by 80% for 36, 43, and 33 to 51 DAA, respectively; in contrast, pyroxasulfone was predicted to reduce waterhemp emergence by 80% for 82 DAA. This study concludes that of the Group 15 herbicides evaluated, flufenacet provides the lowest and shortest residual control of waterhemp, and pyroxasulfone provides the highest and longest residual control of waterhemp.
The development of glufosinate-resistant soybean cultivars has created opportunities for use of glufosinate applied postemergence for weed control. Four field experiments were conducted in 2021 and 2022 to ascertain the effect of glufosinate rate and the addition of ammonium sulfate on annual weed control in glyphosate/glufosinate/2,4-D–resistant soybean. An increased glufosinate rate of 500 from 300 g ai ha−1 improved control of common ragweed, common lambsquarters, redroot pigweed, and foxtail species and resulted in decreased density and dry biomass of common lambsquarters and foxtail species. The addition of ammonium sulfate to glufosinate increased control of common lambsquarters, 2 and 8 wk after application (WAA), and of foxtail species, 2, 4, and 8 WAA, but did not improve control of common ragweed and redroot pigweed. Increasing the dose of glufosinate from 300 to 500 g ai ha−1 improves control of common ragweed, redroot pigweed, common lambsquarters, and foxtail species; however, the benefit of the addition of ammonium sulfate to glufosinate is weed species-specific.
Glyphosate-resistant (GR) biotypes of horseweed were first confirmed in southern Ontario in 2010 and have spread across southern Ontario. A total of four field experiments were conducted between 2021 and 2022 to determine GR horseweed control with one- and two-pass herbicide programs in glyphosate/glufosinate/2,4-D-resistant (GG2R) soybean. 2,4-D choline/glyphosate DMA, halauxifen-methyl, and saflufenacil applied preplant (PP) controlled GR horseweed by 59%, 72%, and 78% 8 wk after postemergence (POST) application (WAA-POST); there was no improvement of GR horseweed control when 2,4-D choline/glyphosate DMA was added to saflufenacil; in contrast, there was improved GR horseweed control when saflufenacil was added to 2,4-D choline/glyphosate DMA. Glufosinate and 2,4-D choline/glyphosate DMA applied POST controlled glyphosate-resistant horseweed by 71% and 86%, respectively, 8 WAA-POST. Two-pass herbicide programs of a PP followed by POST application provided greater GR horseweed control than a PP or POST herbicide applied alone. Glufosinate or 2,4-D choline/glyphosate DMA applied POST following 2,4-D choline/glyphosate DMA or halauxifen-methyl applied PP improved GR horseweed control by 29% to 38% and 24%, respectively at 8 WAA-POST. The application of 2,4-D choline/glyphosate DMA applied POST following saflufenacil applied PP improved control by 20% 8 WAA-POST; there was no improvement of GR horseweed control when glufosinate was applied POST following saflufenacil applied PP or when either POST herbicide was applied following saflufenacil + 2,4-D choline/glyphosate DMA applied PP. When used in a two-pass program, 2,4-D choline/glyphosate DMA POST provided 2% to 3% greater control of GR horseweed than glufosinate.
Waterhemp control in Ontario has increased in complexity due to the evolution of biotypes that are resistant to five herbicide modes of action (Groups 2, 5, 9, 14, and 27 as categorized by the Weed Science Society of America). Four field trials were carried out over a 2-yr period in 2021 and 2022 to assess the control of multiple-herbicide-resistant (MHR) waterhemp biotypes in glyphosate/glufosinate/2,4-D-resistant (GG2R) soybean using one- and two-pass herbicide programs. S-metolachlor/metribuzin, pyroxasulfone/sulfentrazone, pyroxasulfone/flumioxazin, and pyroxasulfone + metribuzin applied preemergence (PRE) controlled MHR waterhemp similarly by 46%, 63%, 60%, and 69%, respectively, at 8 wk after postemergence (POST) application (WAA-B). A one-pass application of 2,4-D choline/glyphosate DMA POST provided greater control of MHR waterhemp than glufosinate. Two-pass herbicide programs of a PRE herbicide followed by (fb) a POST-applied herbicide resulted in greater MHR waterhemp control compared to a single PRE or POST herbicide application. PRE herbicides fb glufosinate or 2,4-D choline/glyphosate DMA POST controlled MHR waterhemp by 74% to 91% and by 84% to 96%, respectively, at 8 WAA-B. Two-pass herbicide applications of an effective PRE residual herbicide fb 2,4-D choline/glyphosate DMA POST in GG2R soybean can effectively manage waterhemp that is resistant to herbicides in Groups 2, 5, 9, 14, and 27.
Neurological involvement associated with SARS-CoV-2 infection is increasingly recognized. However, the specific characteristics and prevalence in pediatric patients remain unclear. The objective of this study was to describe the neurological involvement in a multinational cohort of hospitalized pediatric patients with SARS-CoV-2.
Methods:
This was a multicenter observational study of children <18 years of age with confirmed SARS-CoV-2 infection or multisystemic inflammatory syndrome (MIS-C) and laboratory evidence of SARS-CoV-2 infection in children, admitted to 15 tertiary hospitals/healthcare centers in Canada, Costa Rica, and Iran February 2020–May 2021. Descriptive statistical analyses were performed and logistic regression was used to identify factors associated with neurological involvement.
Results:
One-hundred forty-seven (21%) of 697 hospitalized children with SARS-CoV-2 infection had neurological signs/symptoms. Headache (n = 103), encephalopathy (n = 28), and seizures (n = 30) were the most reported. Neurological signs/symptoms were significantly associated with ICU admission (OR: 1.71, 95% CI: 1.15–2.55; p = 0.008), satisfaction of MIS-C criteria (OR: 3.71, 95% CI: 2.46–5.59; p < 0.001), fever during hospitalization (OR: 2.15, 95% CI: 1.46–3.15; p < 0.001), and gastrointestinal involvement (OR: 2.31, 95% CI: 1.58–3.40; p < 0.001). Non-headache neurological manifestations were significantly associated with ICU admission (OR: 1.92, 95% CI: 1.08–3.42; p = 0.026), underlying neurological disorders (OR: 2.98, 95% CI: 1.49–5.97, p = 0.002), and a history of fever prior to hospital admission (OR: 2.76, 95% CI: 1.58–4.82; p < 0.001).
Discussion:
In this study, approximately 21% of hospitalized children with SARS-CoV-2 infection had neurological signs/symptoms. Future studies should focus on pathogenesis and long-term outcomes in these children.
It has been argued that individuals behave according to a threshold level of concern decision rule when considering protection against risk: if the perceived probability of the risk is below a threshold level, then the likelihood of the risk is treated as zero and protection is deemed unnecessary. Little is known about the determinants of this threshold nor about whether individual thresholds are related to risk specific emotions like worry and regret. We study threshold probabilities and factors that influence these in the context of flood insurance decision making. Based on data collected from 1,041 Dutch homeowners, we find that on average the threshold level of concern for flood insurance demand is negatively related to the expected regret an individual might feel about not purchasing flood insurance if a flood occurs, as well as to worry about flooding.
The history of The Waste Land at its centenary divides almost exactly around the publication in 1971 of The Waste Land: A Facsimile & Transcript of the Original Drafts, edited by Valerie Eliot. In his review of the publication, ‘My God man there's bears on it’, William Empson questions the book's authorial epigraph which calls his poem ‘only the relief of a personal and wholly insignificant grouse against life’ and ‘just a piece of rhythmical grumbling.’ The reviewer notes that a ‘sheer page is given to a reported assertion by the poet, of unknown date and uncertain accuracy (surely, Eliot would never talk this kind of formal irony to Ted Spencer)’. Nevertheless, though the ‘placing of this remark gives it too much importance’, Empson was ‘sure [Eliot] did at some time say such things and believe them,’ elsewhere adding that Eliot ‘seems to have said this kind of thing when irritated by some particularly sanctimonious interpretation’. ‘What then was the grouse about?’, Empson asks, and responds by ingeniously leading biographical material from the editor's introduction back into the representations of ‘the contemporary world’ for which the poem remains both famous and notorious.
The Waste Land's first reception took it for a criticism of western culture whose account, in the first three parts, was understood to be underlined by values asserted in the final one. This interpretation was buttressed by authorial Impersonality, sustained by use of the Objective Correlative, and reinforced by the Mind of Europe via the Dissociation of Sensibility. The publication of the drafts made the poet's ‘personal … grudge’ and ‘rhythmical grumbling’ only too prominent. It pointed towards readings in which the first three sections were not so much about what was wrong with society, as what was amiss with Eliot – a reading Empson helped sketch in his review. These contrasting critical accounts (each figured by the uncertain intona- tional implications of ‘my’ in ‘Shall I at least set my lands in order?’) invite the question how The Waste Land could be both impersonal critique and personal complaint, and thus how the first three parts relate to the last. For, read personally, the poem appears broken backed: if it does affirm the spiritual values of the fifth part, then it really oughtn't to characterise the people of the first three as it does.
Many studies have documented the interaction between 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting and photosystem II (PSII)-inhibiting herbicides. Most have focused on the interaction between mesotrione and atrazine, with only a few studies characterizing the nature of the interaction between tolpyralate and atrazine. Therefore, five field experiments were conducted in Ontario, Canada, over a 3-yr period (2019 to 2021) to characterize the interaction between three rates of tolpyralate (15, 30, and 45 g ai ha−1) and three rates of atrazine (140, 280, and 560 g ai ha−1) for the control of seven annual weed species in corn (Zea mays L.). Tolpyralate at 30 or 45 g ha−1 applied with atrazine at 280 or 560 g ha−1 controlled velvetleaf (Abutilon theophrasti Medik.), redroot pigweed (Amaranthus retroflexus L.), common ragweed (Ambrosia artemisiifolia L.), common lambsquarters (Chenopodium album L.), and wild mustard (Sinapis arvensis L.) >90% at 8 wk after application (WAA). Tolpyralate and atrazine were synergistic at each rate combination for the control of A. theophrasti at 8 WAA. In contrast, A. retroflexus and S. arvensis control at 8 WAA was additive with each rate combination. At 8 WAA, C. album control was generally additive, but one rate combination was synergistic. Ambrosia artemisiifolia control at 8 WAA was synergistic with five rate combinations and additive with the other four. Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] control at 8 WAA was additive with seven of the rate combinations and synergistic with two. Setaria spp. control at 8 WAA was synergistic with one more rate combination compared with E. crus-galli, but the two weed species shared the same synergistic rate combinations. This study concludes that extrapolation or broad classifications of the interaction between tolpyralate and atrazine would be inappropriate, as the interaction can vary due to herbicide rate, weed species, and the response parameter analyzed.
Tolpyralate is an herbicide that is usually mixed with atrazine for broad-spectrum weed control in corn. Previous research has provided information on the effective dose (ED) of tolpyralate applied alone and in a 1:33.3 mixture with atrazine; however, tolpyralate is commercially applied at a dose of 30 to 40 g ai ha−1 with a minimum of 560 g ai ha−1 of atrazine. Therefore, five field trials were conducted over 3 yr (2019 to 2021) to determine the ED of atrazine to complement 30 g ai ha−1 of tolpyralate to achieve 80%, 90%, and 95% control of seven weed species 2, 4, and 8 wk after application (WAA). Tolpyralate was applied alone and in a mixture with atrazine doses ranging from 50 to 2,000 g ai ha−1. At 8 WAA, the ED of atrazine for 95% control of velvetleaf, common ragweed, common lambsquarters, and wild mustard was below the minimum label dose of atrazine on the commercial tolpyralate label, ranging from 430 to 520 g ai ha−1, which supports the use of the minimum label dose of atrazine. In contrast, redroot pigweed required 1,231 g ai ha−1 of atrazine to complement tolpyralate for 95% control 8 WAA. At 8 WAA, barnyardgrass and a mixture of green foxtail and giant foxtail (Setaria spp.) were not controlled by 80%, 90%, or 95% with tolpyralate applied alone or co-applied with any dose of atrazine evaluated in this study. The results of this study conclude that tolpyralate + atrazine is highly efficacious on several weed species at atrazine doses of 40 to 130 g ai ha−1 below the label dose of 560 g ai ha−1, but the use of the higher dose of tolpyralate or another herbicide may be required to improve control of redroot pigweed and grass weed species.