We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Attention-deficit/hyperactivity disorder (ADHD) patients exhibit characteristics of impaired working memory (WM) and diminished sensory processing function. This study aimed to identify the neurophysiologic basis underlying the association between visual WM and auditory processing function in children with ADHD.
Methods
The participants included 86 children with ADHD (aged 6–15 years, mean age 9.66 years, 70 boys, and 16 girls) and 90 typically developing (TD) children (aged 7–16 years, mean age 10.30 years, 66 boys, and 24 girls). Electroencephalograms were recorded from all participants while they performed an auditory discrimination task (oddball task). The visual WM capacity and ADHD symptom severity were measured for all participants.
Results
Compared with TD children, children with ADHD presented a poorer visual WM capacity and a smaller mismatch negativity (MMN) amplitude. Notably, the smaller MMN amplitude in children with ADHD predicted a less impaired WM capacity and milder inattention symptom severity. In contrast, the larger MMN amplitude in TD children predicted a better visual WM capacity.
Conclusions
Our results suggest an intimate relationship and potential shared mechanism between visual WM and auditory processing function. We liken this shared mechanism to a total cognitive resource limit that varies between groups of children, which could drive correlated individual differences in auditory processing function and visual WM. Our findings provide a neurophysiological correlate for reports of WM deficits in ADHD patients and indicate potential effective markers for clinical intervention.
Pebrine disease, caused by Nosema bombycis (Nb) infection in silkworms, is a severe and long-standing disease that threatens sericulture. As parasitic pathogens, a complex relationship exists between microsporidia and their hosts at the mitochondrial level. Previous studies have found that the translocator protein (TSPO) is involved in various biological functions, such as membrane potential regulation, mitochondrial autophagy, immune responses, calcium ion channel regulation, and cell apoptosis. In the present study, we found that TSPO expression in silkworms (BmTSPO) was upregulated following Nb infection, leading to an increase in cytoplasmic calcium, adenosine triphosphate, and reactive oxygen species levels. Knockdown and overexpression of BmTSPO resulted in the promotion and inhibition of Nb proliferation, respectively. We also demonstrated that the overexpression of BmTSPO promotes host cell apoptosis and significantly increases the expression of genes involved in the immune deficiency and Janus kinase-signal transducer and the activator of the transcription pathways. These findings suggest that BmTSPO activates the innate immune signalling pathway in silkworms to regulate Nb proliferation. Targeting TSPO represents a promising approach for the development of new treatments for microsporidian infections.
Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.
Sulfonated carbon is a ‘green,’ solid-acid catalyst. For applications purposes, its surface area needs to be improved and its preparation needs to be made environmentally friendly. The objective of the present study was to provide a green and economical method of preparing a sulfonated carbon catalyst by using palygorskite (Plg) fiber as a support for sulfonated carbon. Sulfonated carbon/palygorskite solid-acid catalyst (SC-Plg) was synthesized via one-step carbonization-sulfonation by mixing palygorskite with sucrose as the carbon source and p-toluenesulfonic acid as the sulfonating agent. The catalyst was characterized by SEM, EDX, TEM, FTIR, and nitrogen adsorption-desorption isotherms. The results indicated that sucrose-derived carbon was loaded uniformly on the surface of Plg fibers and formed the SC-Plg catalyst. The inexpensive Plg fibers could replace sucrose-derived carbon and increase the surface area of the resulting catalyst. The SC-Plg shows significant catalytic performance and excellent stability when used in the esterification of oleic acid with methanol. The conversion of oleic acid reached 68.09%, even after five cycles. This work paves the way for the development of highly active, carbon-based, solid-acid composite catalysts using a natural Plg nanofiber template.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.
Previous studies have confirmed that miR-146a-5p overexpression suppresses neurogenesis, thereby enhancing depression-like behaviors. However, it remains unclear how miR-146a-5p dysregulation produces in vivo brain structural abnormalities in patients with major depressive disorder (MDD).
Methods
In this case–control study, we combined cortical morphology analysis of magnetic resonance imaging (MRI) and miR-146a-5p quantification to investigate the neuropathological effect of miR-146a-5p on cortical thickness in MDD patients. Serum-derived exosomes that were considered to readily cross the blood-brain barrier and contain miR-146a-5p were isolated for miRNA quantification. Moreover, follow-up MRI scans were performed in the MDD patients after 6 weeks of antidepressant treatment to further validate the clinical relevance of the relationship between miR-146a-5p and brain structural abnormalities.
Results
In total, 113 medication-free MDD patients and 107 matched healthy controls were included. Vertex-vise general linear model revealed miR-146a-5p-dependent cortical thinning in MDD patients compared with healthy individuals, i.e., overexpression of miR-146a-5p was associated with reduced cortical thickness in the left orbitofrontal cortex (OFC), anterior cingulate cortex, bilateral lateral occipital cortices (LOCs), etc. Moreover, this relationship between baseline miR-146a-5p and cortical thinning was nonsignificant for all regions in the patients who had received antidepressant treatment, and higher baseline miR-146a-5p expression was found to be related to greater longitudinal cortical thickening in the left OFC and right LOC.
Conclusions
The findings of this study reveal a relationship between miR-146a-5p overexpression and cortical atrophy and thus may help specify the in vivo mediating effect of miR-146a-5p dysregulation on brain structural abnormalities in patients with MDD.
This study aimed to explore the impacts of COVID-19 outbreak on mental health status in general population in different affected areas in China.
Methods
This was a comparative study including two groups of participants: (1) general population in an online survey in Ya'an and Jingzhou cities during the COVID-19 outbreak from 10–20 February 2020; and (2) matching general population selected from the mental health survey in Ya'an in 2019 (from January to May 2019). General Health Questionnaire (GHQ-12), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were used.
Results
There were 1775 participants (Ya'an in 2019 and 2020: 537 respectively; Jingzhou in 2020: 701). Participants in Ya'an had a significantly higher rate of general health problems (GHQ scores ⩾3) in 2020 (14.7%) than in 2019 (5.2%) (p < 0.001). Compared with Ya'an (8.0%), participants in Jingzhou in 2020 had a significantly higher rate of anxiety (SAS scores ⩾50, 24.1%) (p < 0.001). Participants in Ya'an in 2020 had a significantly higher rate of depression (SDS scores ⩾53, 55.3%) than in Jingzhou (16.3%) (p < 0.001). The risk factors of anxiety symptoms included female, number of family members (⩾6 persons), and frequent outdoor activities. The risk factors of depression symptoms included participants in Ya'an and uptake self-protective measures.
Conclusions
The prevalence of psychological symptoms has increased sharply in general population during the COVID-19 outbreak. People in COVID-19 severely affected areas may have higher scores of GHQ and anxiety symptoms. Culture-specific and individual-based psychosocial interventions should be developed for those in need during the COVID-19 outbreak.
In March 2020, China had periodically controlled the coronavirus disease-19 (COVID-19) epidemic. We reported the results of health screening for COVID-19 among returned staff of a hospital and conducted a summary analysis to provide valuable experience for curbing the COVID-19 epidemic and rebound. In total, 4729 returned staff from Zhongnan Hospital of Wuhan University, Wuhan, China were examined for COVID-19, and the basic information, radiology and laboratory test results were obtained and systematically analysed. Among the 4729 employees, medical staff (62.93%) and rear-service personnel (30.73%) were the majority. The results of the first physical examination showed that 4557 (96.36%) were normal, 172 (3.64%) had abnormal radiological or laboratory test results. After reexamination and evaluation, four were at high risk (asymptomatic infections) and were scheduled to transfer to a designated hospital, and three were at low risk (infectivity could not be determined) and were scheduled for home isolation observation. Close contacts were tracked and managed by the Center for Disease Control and Prevention (CDC) in China. Asymptomatic infections are a major risk factor for returning to work. Extensive health screening combined with multiple detection methods helps to identify asymptomatic infections early, which is an important guarantee in the process of returning to work.
The present study investigated the association between fibre degradation and the concentration of dissolved molecular hydrogen (H2) in the rumen. Napier grass (NG) silage and corn stover (CS) silage were compared as forages with contrasting structures and degradation patterns. In the first experiment, CS silage had greater 48-h DM, neutral-detergent fibre (NDF) and acid-detergent fibre degradation, and total gas and methane (CH4) volumes, and lower 48-h H2 volume than NG silage in 48-h in vitro incubations. In the second experiment, twenty-four growing beef bulls were fed diets including 55 % (DM basis) NG or CS silages. Bulls fed the CS diet had greater DM intake (DMI), average daily gain, total-tract digestibility of OM and NDF, ruminal dissolved methane (dCH4) concentration and gene copies of protozoa, methanogens, Ruminococcus albus and R. flavefaciens, and had lower ruminal dH2 concentration, and molar proportions of valerate and isovalerate, in comparison with those fed the NG diet. There was a negative correlation between dH2 concentration and NDF digestibility in bulls fed the CS diet, and a lack of relationship between dH2 concentration and NDF digestibility with the NG diet. In summary, the fibre of CS silage was more easily degraded by rumen microorganisms than that of NG silage. Increased dCH4 concentration with the CS diet presumably led to the decreased ruminal dH2 concentration, which may be helpful for fibre degradation and growth of fibrolytic micro-organisms in the rumen.
There has been considerable interest in stratospheric airships as a cost-effective alternative to earth orbit satellites for sightseeing, aerial photography, communication and carrying weapons, etc. Many countries have plans to develop the airship owing to its greatly expected usage. The suspended curtain plays a vital role in force transmission in stratospheric airships but lacks attention. In this paper, the relationship between the optimal shape of suspended curtain and load conditions was studied through CAE Abaqus and Isight. Firstly, by using secondary development function of Abaqus, parametric FEA models of suspended curtains and envelopes have been established, several parameters were used to describe the shape of suspended curtains. Secondly, parameters of the suspended curtain shape were optimized under different loading conditions by means of the genetic algorithm. Lastly, through the analysis of the results, some conclusions are summarized: The relationship between n1(n2) and nb was found to be linear when the suspended curtain is subjected to vertical load. The stress transfer law of suspended curtain and inflatable membrane structure under the inclined load were also obtained, which are valuable for the structural engineering design of stratospheric airships..
The aim of this study was to analyze the profile of chest injuries, oxygen therapy for respiratory failure, and the outcomes of victims after the Jiangsu tornado, which occurred on June 23, 2016 in Yancheng City, Jiangsu Province, China.
Methods:
The clinical records of 144 patients referred to Yancheng City No.1 People’s Hospital from June 23 through June 25 were retrospectively investigated. Of those patients, 68 (47.2%) sustained major chest injuries. The demographic details, trauma history, details of injuries and Abbreviated Injury Scores (AIS), therapy for respiratory failure, surgical procedures, length of intensive care unit (ICU) and hospital stay, and mortality were analyzed.
Results:
Of the 68 patients, 41 (60.3%) were female and 27 (39.7%) were male. The average age of the injured patients was 57.1 years. Forty-six patients (67.6%) suffered from polytrauma. The mean thoracic AIS of the victims was calculated as 2.85 (SD = 0.76). Rib fracture was the most common chest injury, noted in 56 patients (82.4%). Pulmonary contusion was the next most frequent injury, occurring in 12 patients (17.7%). Ten patients with severe chest trauma were admitted to ICU. The median ICU stay was 11.7 (SD = 8.5) days. Five patients required intubation and ventilation, one patient was treated with noninvasive positive pressure ventilation (NPPV), and four patients were treated with high-flow nasal cannula (HFNC). Three patients died during hospitalization. The hospital mortality was 4.41%.
Conclusions:
Chest trauma was a common type of injury after tornado. The most frequent thoracic injuries were rib fractures and pulmonary contusion. Severe chest trauma is usually associated with a high incidence of respiratory support requirements and a long length of stay in the ICU. Early initiation of appropriate oxygen therapy was vital to restoring normal respiratory function and saving lives. Going forward, HFNC might be an effective and well-tolerated therapeutic addition to the management of acute respiratory failure in chest trauma.
Two new species of Nilssoniopteris of the order Bennettitales, Nilssoniopteris hamiensis Zhao and Deng, new species and Nilssoniopteris crassiaxis Zhao and Deng, new species, are established from the Xishanyao Formation (Middle Jurassic) of Sandaoling Coal Mine in Hami, Xinjiang, China, based on leaf macromorphology and cuticular features. Nilssoniopteris hamiensis n. sp. is characterized by its varied leaf shapes and trichome bases of 1–4 cells on the abaxial epidermis. Nilssoniopteris crassiaxis n. sp. is characterized by its broad midrib (especially near the leaf base) and trichome bases of 1–3 cells on the abaxial epidermis. Both species possess unique venation patterns that are not only simple and free, but also forked and merged to form closed loops. These anastomosing veins are even more complicated in N. crassiaxis n. sp. in that the veins can fork once, twice, or even three times, the forked veins can later merge with each other or with an adjacent vein to form a closed loop, which may later further disjoin. The generic diagnosis of Nilssoniopteris is thus accordingly emended, particularly in the venation pattern. In addition, the stratigraphic and geographical distributions of all 45 Jurassic Nilssoniopteris species worldwide have been summarized and analyzed to better understand their brief evolutionary history, indicating that Nilssoniopteris might be able to grow not only in subtropical regions as the living cycads are, but also in warm climatic regions.
This paper focuses on the importance of dynamic capabilities in shaping the nature of international strategies of emerging market multinationals from mid-range economies. We argue that dynamic capabilities theory provides an insightful approach to understanding the internationalization of emerging market multinationals and their strategic choices. Drawing on dynamic capability theory and unpacking dynamic capabilities into four distinct but related dimensions or facets, we develop a typology of three internationalization strategies available to emerging market multinationals in their international expansion: sequential international ambidexterity (from exploitation to exploration, and vice versa) and structural international ambidexterity (simultaneous exploration and exploitation). Success factors associated with each of the ambidextrous internationalization strategies are also considered. We conclude with a discussion of the implications of the dynamic capabilities framework for theoretical implications and fruitful areas for future research endeavors.
Ni/Sn–xZn/Ni (x = 1, 5, 9 wt%) joints were used to investigate the effect of Zn content on interfacial reactions during reflow under a temperature gradient. Asymmetrical growth and transformation of intermetallic compounds (IMCs) occurred between the cold and hot end interfaces. Faster IMC growth at the cold end and a more prompt IMC transformation at the hot end in a lower Zn content solder joint were identified due to the more thermomigration-induced Zn and Ni atomic fluxes toward the cold end. The main diffusion species into IMC layers changed from Zn atoms at the early stage to Sn and Ni atoms at the later stage. As a result, the IMC evolution followed (Ni,Zn)3Sn4 → Ni3Sn4 in the Ni/Sn–1Zn/Ni joint, Ni5Zn21 → τ phase → Ni3Sn4 in the Ni/Sn–5Zn/Ni joint, and Ni5Zn21 → τ phase in the Ni/Sn–9Zn/Ni joint along with the reflow time. A higher Zn content could effectively inhibit the dissolution of the hot-end Ni substrate and restrain the growth rate of the cold-end interfacial IMCs.
An extruded Mg–8Gd–4Y–1Nd–0.5Zr alloy was preheated at 500 °C for 0.5 h and then subjected to hot compression to a true strain of 0.69 at temperature 450 °C and a strain rate of 0.2 s−1. It is observed that boundaries of small grains (∼3 μm) in the extruded alloy are decorated with irregular-shaped particles; small grains show a weak texture of three main components of $\left\langle {0001} \right\rangle //{\rm{TD}}$, $\left\langle {11\overline 2 1} \right\rangle //{\rm{ND}}$, and $\left\langle {10\overline 1 0} \right\rangle //{\rm{ED}}$. Dynamic recrystallization is concurrent with dynamic precipitation of particles during hot compression, resulting in both a uniform grain structure and a redistribution of particles. The retained particles before compression keep the texture unchanged during compression, leading to the same texture type of $\left\langle {0001} \right\rangle //{\rm{TD}}$ of the compressed alloy as that of the preheated alloy. The compressed alloy exhibits a better aging hardening ability than the extruded alloy. After peak aging, the compressed alloy presents an ultimate tensile strength of 416 MPa, a yield tensile strength of 317 MPa, and an elongation of 2.7%.
The Virtue Existential Career Model (VEC) is a Chinese career development model based on the Classic of Changes. It is designed to supplement the person-environment fit paradigm of Taiwan's 12-Year Basic Education for junior high school students. We adopted an action research approach with two parts, reflection-on-action and critical-emancipatory. An easy-to-use VEC career curriculum and a career information system (Career Genesis; CG) were developed by a team of staff members from government agencies (Tainan Department of Education and Student Counseling Centers), junior high schools, and the Chinese Career Research Center of National Changhua University of Education, Taiwan. The outcome of this project was strong on fostering interconnectedness. Implementing our VEC curriculum and CG to 30 junior high school students received statistically significant immediate increases in resilience, adaptation, and liking of career decision. The feedback and reflections suggest that mandating, attracting, and simplifying are useful strategies to promote our VEC model as well as to facilitate social change and create a multiple-win situation for all parties involved. This approach also follows the tao (道) of the Classic of Changes to provide new knowledge.
This article reports a detailed analysis of 138 peer-reviewed articles in 41 journals published in the last 12 years (2001-2012) that focus on Chinese outward foreign direct investment from a theoretical advancement perspective. It assesses how the topic has been explored both conceptually and empirically and identifies the substantive contributions to the literature using a thematic analysis. The article argues that research on the international expansion of Chinese multinational corporations offers a unique opportunity to extend and develop extant theorizing in four primary research streams: the latecomer perspective; Chinese state and government influences; the dynamics of firms and institutions; and the liability of foreignness. Building on the results of this analysis, the article offers five recommendations as promising ways to open up theoretical inquiry: (1) cross-fertilization among the four research streams; (2) integration of resource- and institution-based theories with other theoretical lenses; (3) research on the process dimensions using a longitudinal approach; (4) adoption of multi-levels of analysis; and (5) consideration of the wider emerging market literature.
To challenge the Taiwan Ministry of Education's (TMOE) dominant enforcement of a person-environment fit model, the Chinese Career Research Center incorporated yin-yang alternation principles from the Classic of Changes (I Ching, Yi Jing or 易經) to develop the model of career development touching the sky yet grounded (TSG) and corresponding practice guidelines, a career website (CCN), and four career service projects. Using Lewin's (1946) cyclical-spiral process of action research, CCN and TSG service projects were promoted to complement the TMOE's fit model, and feedback was utilised to revise our TSG model and its applications. Yin-yang alternation principles and the four stages of chien (the creative) from the Classic of Changes were applied to develop social action strategies. Social change was indicated by counsellors’ and students’ changes in their career views, as well as the TMOE's direct financial support for TSG service projects. This progress is encouraging for whoever is interested in developing culture-inclusive indigenous psychology with practical outcomes.
High-throughput DNA sequencing techniques allow for the identification and characterisation of microbes and their genes (microbiome). Using these new techniques, microbial populations in several niches of the human body, including the oral and nasal cavities, skin, urogenital tract and gastrointestinal tract, have been described recently. Very little data on the microbiome of companion animals exist, and most of the data have been derived from the analysis of the faeces of healthy laboratory animals. High-throughput assays provide opportunities to study the complex and dense populations of the gut microbiota, including bacteria, archaea, fungi, protozoa and viruses. Our laboratory and others have recently described the predominant microbial taxa and genes of healthy dogs and cats and how these respond to dietary interventions. In general, faecal microbial phylogeny (e.g. predominance of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria) and functional capacity (e.g. major functional groups related to carbohydrate, protein, DNA and vitamin metabolism; virulence factors; and cell wall and capsule) of the canine and feline gut are similar to those of the human gut. Initial sequencing projects have provided a glimpse of the microbial super-organism that exists within the canine and feline gut, but leaves much to be explored and discovered. As DNA provides information only about potential functions, studies that focus on the microbial transcriptome, metabolite profiles, and how microbiome changes affect host physiology and health are clearly required. Future studies must determine how diet composition, antibiotics and other drug therapies, breed and disease affect or are affected by the gut microbiome and how this information may be used to improve diets, identify disease biomarkers and develop targeted disease therapies.