We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cryphodera guangdongensis n. sp. was collected from the soil and roots of Schima superba in Guangdong province, China. The new species is characterised by having a nearly spherical female, with dimensions of length × width = 532.3 (423.8–675.3) × 295.6 (160.0–381.2) μm, stylet length of 35.7 (31.1–42.1) μm, protruding vulval lips, a vulval slit measuring 54.2 (47.4–58.9) μm, an area between the vulva and anus that is flat to concave, and a vulva–anus distance 49.3 (41.1–57.6) μm. The male features two lip annules, a stylet length of 31.7 (27.4–34.8) μm and basal knobs that are slightly projecting anteriorly, while lateral field is areolated with three incisures and spicules length of 27.1 (23.7–31.0) μm. The second stage juvenile is characterised by a body length of 506.1 (441.8–564.4) μm long, two to three lip annules, a stylet length 31.2 (29.7–33.2) μm which is well developed, basal knobs projecting anteriorly, a lateral field that is areolate with three incisures, and a narrow rounded tail measuring 63.2 (54.2–71.3) μm long, with a hyaline region of 35.6 (27.4–56.6) μm long that is longer than the stylet. Based on morphology and morphometrics, the new species is closely related to C. sinensis and C. japonicum within the genus Cryphodera. The phylogenetic trees constructed based on the ITS-rRNA, 28S-rRNA D2–D3 region, and the partial COI gene sequences indicate that the new species clusters with other Cryphodera species but maintains in a separated subgroup. A key to the species of the genus Cryphodera is also provided in this study.
The interaction of helminth infections with type 2 diabetes (T2D) has been a major area of research in the past few years. This paper, therefore, focuses on the systematic review of the effects of helminthic infections on metabolism and immune regulation related to T2D, with mechanisms through which both direct and indirect effects are mediated. Specifically, the possible therapeutic role of helminths in T2D management, probably mediated through the modulation of host metabolic pathways and immune responses, is of special interest. This paper discusses the current possibilities for translating helminth therapy from basic laboratory research to clinical application, as well as existing and future challenges. Although preliminary studies suggest the potential for helminth therapy for T2D patients, their safety and efficacy still need to be confirmed by larger-scale clinical studies.
Deformation occurs in a thin liquid film when it is subjected to a non-uniform electric field, which is referred to as the electrohydrodynamic patterning. Due to the development of a non-uniform electrical force along the surface, the film would evolve into microstructures/nanostructures. In this work, a linear and a nonlinear model are proposed to thoroughly investigate the steady state (i.e. equilibrium state) of the electrohydrodynamic deformation of thin liquid film. It is found that the deformation is closely dependent on the electric Bond number BoE. Interestingly, when BoE is larger than a critical value, the film would be deformed remarkably and get in contact with the top template. To model the ‘contact’ between the liquid film and the solid template, the disjoining pressure is incorporated into the numerical model. From the nonlinear numerical model, a hysteresis deformation is revealed, i.e. the film may have different equilibrium states depending on whether the voltage is increased or decreased. To analyse the stability of these multiple equilibrium states, the Lyapunov functional is employed to characterise the system’s free energy. According to the Lyapunov functional analysis, at most three equilibrium states can be formed. Among them, one is stable, another is metastable and the third one is unstable. Finally, the model is extended to study the three-dimensional deformation of the electrohydrodynamic patterning.
Despite being almost 4000m above sea level, cereal crops have been grown in the Ngari Prefecture on the Tibetan Plateau for thousands of years. Where and when domestic crop species adapted to high-altitude growing conditions is a matter of ongoing debate. Here, the authors present a new radiocarbon date from the Gepa serul cemetery, providing the earliest evidence of naked six-rowed barley in Tibet (c. 3500 BP). Evaluating the available evidence for barley cultivation and interregional connections in central Asia at this time, two hypotheses are considered—a generational advance with farmers migrating up river valleys or rapid, long-distance trade through mountain corridors.
Major depressive disorder (MDD) is a prevalent and disabling condition. Approximately 30-50% of patients do not respond to first-line medication or psychotherapy. Therefore, several studies have investigated the predictive potential of pretreatment severity rating or neuroimaging features to guide clinical approaches that can speed optimal treatment selection.
Objectives
To evaluate the performance of 1) severity ratings (scores of Hamilton Depression/Anxiety Scale, illness duration, and sleep quality, etc.) and demographic characteristic and 2) brain magnetic resonance imaging (MRI) features in predicting treatment outcomes for MDD. Second, to assess performance variations among varied modalities and interventions in MRI studies.
Methods
We searched studies in PubMed, Embase, Web of Science, and Science Direct databases before March 22, 2023. We extracted a confusion matrix for prediction in each study. Separate meta-analyses were performed for clinical and MRI studies. The logarithm of diagnostic odds ratio [log(DOR)], sensitivity, and specificity were conducted using Reitsma’s random effect model. The area under curve (AUC) of summary receiver operating characteristic (SROC) curve was calculated.
Subgroup analyses were conducted in MRI studies based on modalities: resting-state functional MRI (rsfMRI), task-based fMRI (tbfMRI), and structural MRI (sMRI), and interventions: antidepressant (including selective serotonin reuptake inhibitors [SSRI]) and electroconvulsive therapy (ECT). Meta-regression was conducted 1) between clinical and MRI studies and 2) among modality or intervention subgroups in MRI studies.
Results
We included ten studies used clinical features covering 6494 patients, yielded a log(DOR) of 1.42, AUC of 0.71, sensitivity of 0.61, and specificity of 0.74. In terms of MRI, 44 studies with 2623 patients were included, revealing an overall log(DOR) of 2.53. The AUC, sensitivity, and specificity were 0.89, 0.78, and 0.75.
Studies using MRI features had a higher sensitivity (0.89 vs. 0.61) in predicting treatment outcomes than clinical features (P < 0.001). RsfMRI had higher specificity (0.79 vs. 0.69) than tbfMRI subgroup (P = 0.01). No significant differences were found between sMRI and other modalities, nor between antidepressants (SSRIs and others) and ECT. Antidepressant studies primarily identified predictive imaging features in limbic and default mode networks, while ECT mainly focused on limbic network.
Conclusions
Our findings suggest a robust promise for pretreatment brain MRI features in predicting treatment outcomes in MDD, offering higher accuracy than clinical studies. While tasks in tbfMRI studies differed, those studies overall had less predictive utility than rsfMRI data. For MRI studies, overlapping but distinct network level measures predicted outcomes for antidepressants and ECT.
Stable separation is a crucial condition that must be met in order for combined aircraft to successfully engage in cooperative flight. In order to achieve the desired fast and controlled separation, this paper proposes a novel design for a torque-driven compliant separation mechanism. By taking into account the compliance characteristics of a sinusoidal acceleration function curve, a mechanical model for the separation mechanism is developed. By utilising the Coulomb friction law, an accurate determination of the aerodynamic load distribution under various conditions is achieved. Subsequently, the relationship between the unlocking moment and the aerodynamic load is derived based on these findings. Through the utilisation of the finite element method, a model of the separation mechanism is generated. To ensure the safety and reliability of the compliant separation mechanism, the mechanical properties of the structural materials are thoroughly analysed under the maximum aerodynamic load. Subsequently, the separation mechanism structure is constructed and subjected to testing in order to showcase the compliance characteristics. In addition, this paper conducts a simulation to analyse the impact of flight speed and angle-of-attack on the separation process. By doing so, the optimal conditions for separation are determined. The methods and findings presented in this study have the potential to contribute valuable insights to the design of combined aircraft.
Brick-red deposits with palygorskite (Pal) as the main ingredient are widely distributed in nature, but these have not been deployed at a large scale in industry because of their inherent deep colors. In the present study, the brick-red Pal deposit was treated hydrothermally in various reaction media including water, a urea solution, and a thiourea solution. The effects of these processes on the structure, physicochemical features, and color of Pal were studied intensively to understand the structure and composition of the brick-red Pal deposit and to lay a theoretical foundation for the extension of its industrial application. The changes in structural features after hydrothermal treatment were studied by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, magic-angle spinning nuclear magnetic resonance, and Mössbauer spectroscopy techniques. The results indicated that the color of brick-red Pal did not change after hydrothermal treatment in water or in a urea solution, and the color changed to gray-white after treatment in the thiourea solution. The rod-like crystal morphology of Pal was retained throughout the experiments and no significant change in the main associated minerals, including feldspar, muscovite, and quartz, was observed after hydrothermal treatment. The dissolution of associated hematite (α-Fe2O3 and the reduction of Fe(III) species are the main reason for the change of Pal from brick-red to gray-white.
The poor environmental stability of natural anthocyanin hinders its usefulness in various functional applications. The objectives of the present study were to enhance the environmental stability of anthocyanin extracted from Lycium ruthenicum by mixing it with montmorillonite to form an organic/inorganic hybrid pigment, and then to synthesize allochroic biodegradable composite films by incorporating the hybrid pigment into sodium alginate and test them for potential applications in food testing and packaging. The results of X-ray diffraction, Fourier-transform infrared spectroscopy, and use of the Brunauer–Emmett–Teller method and zeta potential demonstrated that anthocyanin was both adsorbed on the surface and intercalated into the interlayer of montmorillonite via host–guest interaction, and the hybrid pigments obtained allowed good, reversible, acid/base behavior after exposure to HCl and NH3 atmospheres. The composite films containing hybrid pigments had good mechanical properties due to the uniform dispersion of the pigments in a sodium alginate substrate and the formation of hydrogen bonds between them. Interestingly, the composite films also exhibited reversible acidichromism. The as-prepared hybrid pigments in composite films could, therefore, serve simultaneously as a reinforced material and as a smart coloring agent for a polymer substrate.
Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ($>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
This study aimed to compare the pre- and post-operative vestibular and equilibrium functions of patients with cholesteatoma-induced labyrinthine fistulas who underwent different management methods.
Methods
Data from 49 patients with cholesteatoma-induced labyrinthine fistulas who underwent one of three surgical procedures were retrospectively analysed. The three management options were fistula repair, obliteration and canal occlusion.
Results
Patients underwent fistula repair (n = 8), canal occlusion (n = 18) or obliteration procedures (n = 23). Patients in the fistula repair and canal occlusion groups suffered from post-operative vertigo and imbalance, which persisted for longer than in those in the obliteration group. Despite receiving different management strategies, all patients achieved complete recovery of equilibrium functions through persistent efforts in rehabilitation exercises.
Conclusion
Complete removal of the cholesteatoma matrix overlying the fistula is reliable for preventing iatrogenic hearing deterioration due to unremitting labyrinthitis. Thus, among the three fistula treatments, obliteration is the optimal method for preserving post-operative vestibular functions.
This study aimed to establish a model for predicting the three-year survival status of patients with hypopharyngeal squamous cell carcinoma using artificial intelligence algorithms.
Method
Data from 295 patients with hypopharyngeal squamous cell carcinoma were analysed retrospectively. Training sets comprised 70 per cent of the data and test sets the remaining 30 per cent. A total of 22 clinical parameters were included as training features. In total, 12 different types of machine learning algorithms were used for model construction. Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve and Cohen's kappa co-efficient were used to evaluate model performance.
Results
The XGBoost algorithm achieved the best model performance. Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve and kappa value of the model were 80.9 per cent, 92.6 per cent, 62.9 per cent, 77.7 per cent and 58.1 per cent, respectively.
Conclusion
This study successfully identified a machine learning model for predicting three-year survival status for patients with hypopharyngeal squamous cell carcinoma that can offer a new prognostic evaluation method for the clinical treatment of these patients.
To assess the accuracy of the Varian PerfectPitch six-degree-of-freedom (6DOF) robotic couch by using a Varian SRS QA phantom.
Methods:
The stereotactic radiosurgery (SRS) phantom has five tungsten carbide BBs each with 7·5 mm in diameter arranged with the known geometry. Optical surface images and cone beam CT (CBCT) images of the phantom were taken at different pitch, roll and rotation angles. The pitch, roll, and rotation angles were varied from −3 to 3 degrees by inputs from the linac console. A total of 39 Vision RT images with different rotation angle combinations were collected, and the Vision RT software was used to determine the rotation angles and translational shifts from those images. Eight CBCT images at most allowed rotational angles were analysed by in-house software. The software took the coordinates of the voxel of the maximum CT number inside a 7·5-mm sphere surrounding one BB to be the measured position of this BB. Expected BB positions at different rotation angles were determined by multiplying measured BB positions at zero pitch and roll values by a rotation matrix. Applying the rotation matrix to 5 BB positions yielded 15 equations. A linear least square method was used for regression analysis to approximate the solutions of those equations.
Results:
Of the eight calculations from CBCT images, the maximum rotation angle differences (degree) were 0·10 for pitch, 0·15 for roll and 0·09 for yaw. The maximum translation differences were 0·3 mm in the left–right direction, 0·5 mm in the anterior–posterior direction and 0·4 mm in the superior–inferior direction.
Conclusions:
The uncertainties of the 6-DOF couch were examined with the methods of optical surface imaging and CBCT imaging of the SRS QA phantom. The rotational errors were less than 0·2 degree, and the isocentre shifts were less than 0·8 mm.
In the present study, we investigated the influence of different mid-stage N compensation timings on agronomic and physiological traits associated with grain yield and quality in field experiments. Two japonica rice cultivars with a good tasting quality (Nangeng 9108 and Nangeng 5055) were examined under eight N compensation timings (N1–N6: one-time N compensation at 7-2 weeks before heading; N7: split N compensation at 5 and 3 weeks before heading; N8: split N compensation at 4 and 2 weeks before heading) and a control with no N compensation. The highest yield was obtained with N7, followed by N3. The yield advantage is mainly attributable to the improved population structure (higher productive tiller rate with a stable number of effective panicles), higher total number of spikelets per unit area (large panicles with more grains per panicle), larger leaf area index in the late period and higher photosynthetic production capacity (more dry matter accumulation and transportation in the middle and late periods). Delaying N compensation timing improved the processing and nutritional quality of rice, but decreased the quality of appearance and cooking/eating traits. Our results suggest that, from the perspective of achieving relative coordination between high yield and high quality of japonica rice, the optimal N compensation should be divided equally at 5 and 3 weeks before heading. However, if simplifying the number of operations and the pursuit of eating quality were considered, one-time N compensation should be conducted at 5 weeks before heading.
This paper studied the use of eye movement data to form criteria for judging whether pilots perceive emergency information such as cockpit warnings. In the experiment, 12 subjects randomly encountered different warning information while flying a simulated helicopter, and their eye movement data were collected synchronously. Firstly, the importance of the eye movement features was calculated by ANOVA (analysis of variance). According to the sorting of the importance and the Euclidean distance of each eye movement feature, the warning information samples with different eye movement features were obtained. Secondly, the residual shrinkage network modules were added to CNN (convolutional neural network) to construct a DRSN (deep residual shrinkage networks) model. Finally, the processed warning information samples were used to train and test the DRSN model. In order to verify the superiority of this method, the DRSN model was compared with three machine learning models, namely SVM (support vector machine), RF (radom forest) and BPNN (backpropagation neural network). Among the four models, the DRSN model performed the best. When all eye movement features were selected, this model detected pilot perception of warning information with an average accuracy of 90.4%, of which the highest detection accuracy reached 96.4%. Experiments showed that the DRSN model had advantages in detecting pilot perception of warning information.
China plays a critical role in global biodiversity conservation, as both a biodiversity hotspot and for its role in international and domestic animal trade. Efforts to promote wildlife conservation have sparked interest in the attitudes held by Chinese citizens towards animals. Using a questionnaire, we sought to investigate the attitudes of 317 Chinese nationals across 22 provincial-level administrative units regarding their uses of animals, their perceived emotional capacities and views on exotic pets. We reduced the variables related to perceived uses of animals via Principal Component Analysis and ran Generalised Linear Models and Structural Equation Modelling to test relationships between questionnaire-derived variables. Perceptions of animals were divided into two Kellert categories — Utilitarian and Humanistic uses — and 97% of participants believed in animals’ capacities to have and express emotions. We found few interactions, with exotic pets, ie playing with or taking photographs, but the acceptability of owning an exotic pet influenced the likelihood of purchasing one. A belief that animals express emotions encouraged people to look for them as pets but thinking that pets make people happy made exotic pet ownership less acceptable. The shift in attitudes to include humanistic perceptions of animals, a belief in animals as emotive beings and understanding of terminology changed from the previous utilitarian views of pre-reform China, suggesting a readiness to embrace further conservation efforts in China. This deeper understanding of Chinese attitudes toward animals and drivers of the exotic pet trade within China may enable conservation efforts to better target future campaigns.
Patients with major depressive disorder (MDD) with acute suicidal ideation or behavior (MDSI) require immediate intervention. Though oral antidepressants can be effective at reducing depressive symptoms, they can take 4–6 weeks to reach full effect.
Objectives
This study aimed to identify unmet needs in the treatment of patients with MDSI, specifically exploring the potential clinical benefits of rapid reduction of depressive symptoms.
Methods
A Delphi panel consisting of practicing psychiatrists (n=12) from the US, Canada and EU was conducted between December 2020–June 2021. Panelists were screened to ensure they had sufficient experience with managing patients with MDD and MDSI. Panelists completed two survey rounds, and a virtual consensus meeting.
Results
This research confirmed current unmet needs in the treatment of patients with MDSI.
Hopelessness, functional impairment, worsening of MDD symptoms, recurrent hospitalization and higher risk of suicide attempt were considered as key consequences of the slow onset of action of oral antidepressants.
Treatment with rapid acting antidepressant was anticipated by panelists to provide short-term benefit such as rapid reduction of core MDD symptoms which may contribute to shorter hospital stays and improved patient engagement/compliance, allowing for earlier interventions and improved patient outcomes. For long-term benefits, panelists agreed that improved daily functioning and increased trust/confidence in treatment options, constitute key benefits of rapid-acting treatments
Conclusions
There is need for rapid-acting treatments which may help address key unmet needs and provide clinically meaningful benefits driven by the rapid relief of depressive symptoms particularly in patients with MDSI.
Disclosure
SB, ED, KJ, MO’H, QZ, MM, MH, SR, JA and DZ are employees of Janssen and hold stock in Johnson & Johnson Inc. AN is currently employed by Neurocrine Biosciences Inc. RP is an employee of Adelphi Values PROVE hired by Janssen.
The extant findings have been of great heterogeneity due to partial volume effects in the investigation of cortical gray matter volume (GMV), high comorbidity with other psychiatric disorders, and concomitant therapy in the neuroimaging studies of social anxiety disorder (SAD).
Objectives
To identity gray matter deficits in cortical and subcortical structures in non-comorbid never-treated patients, so as to explore the “pure” SAD-specific pathophysiology and neurobiology.
Methods
Thirty-two non-comorbid free-of-treatment patients with SAD and 32 demography-matched healthy controls were recruited to undergo high-resolution 3.0-Tesla T1-weighted MRI. Cortical thickness (CT) and subcortical GMV were estimated using FreeSurfer; then the whole-brain vertex-wise analysis was performed to compare group differences in CT. Besides, differences in subcortical GMV of priori selected regions-of-interest: amygdala, hippocampus, putamen, and pallidum were compared by an analysis of covariance with age, gender, and total subcortical GMV as covariates.
Results
The SAD patients demonstrated significantly decreased CT near-symmetrically in the bilateral prefrontal cortex (Monte Carlo simulations of P < 0.05). Besides, smaller GMV in the left hippocampus and pallidum were also observed in the SAD cohort (two-sample t-test of P < 0.05).
Conclusions
For the first time, the current study investigated the structural alterations of CT and subcortical GMV in non-comorbid never-treated patients with SAD. Our findings provide preliminary evidences that structural deficits in cortical-striatal-limbic circuit may contribute to the psychopathological basis of SAD, and offer more detailed structural substrates for the involvement of such aberrant circuit in the imbalance between defective bottom-up response and top-down control to external stimuli in SAD.