We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
Similar to adults with posttraumatic stress disorder, children with early life adversity show bias in memory for negative emotional stimuli. However, it is not well understood how childhood adversity impacts mechanisms underlying emotional memory. N = 56 children (8–14 years, 48% female) reported on adverse experiences including potentially traumatic events and underwent fMRI while attending to emotionally pleasant, neutral, or negative images. Post-scan, participants completed a cued recall test to assess memory for these images. Emotional difference-in-memory (DM) scores were computed by subtracting negative or positive from neutral recall performance. All children showed enhancing effects of emotion on recall, with no effect of trauma load. However, children with less trauma showed a larger emotional DM for both positive and negative stimuli when amygdala or anterior hippocampal activity was higher. In contrast, highly trauma-exposed children demonstrated a lower emotional DM with greater amygdala or hippocampal activity. This suggested that alternative neural mechanisms might support emotional enhancement of encoding in children with greater trauma load. Whole-brain analyses revealed that right fusiform activity during encoding positively correlated with both trauma load and successful later recall of positive images. Therefore, highly trauma-exposed children may use alternative, potentially adaptive neural pathways via the ventral visual stream to encode positive emotional events.
The semantics of gradually typed languages is typically given indirectly via an elaboration into a cast calculus. This contrasts with more conventional formulations of programming language semantics, where the semantics of a language is given directly using, for instance, an operational semantics. This paper presents a new approach to give the semantics of gradually typed languages directly. We use a recently proposed variant of small-step operational semantics called type-directed operational semantics (TDOS). In a TDOS, type annotations become operationally relevant and can affect the result of a program. In the context of a gradually typed language, type annotations are used to trigger type-based conversions on values. We illustrate how to employ a TDOS on gradually typed languages using two calculi. The first calculus, called $\lambda B^{g}$, is inspired by the semantics of the blame calculus, but it has implicit type conversions, enabling it to be used as a gradually typed language. The second calculus, called $\lambda e$, explores an eager semantics for gradually typed languages using a TDOS. For both calculi, type safety is proved. For the $\lambda B^{g}$ calculus, we also present a variant with blame labels and illustrate how the TDOS can also deal with such an important feature of gradually typed languages. We also show that the semantics of $\lambda B^{g}$ with blame labels is sound and complete with respect to the semantics of the blame calculus, and that both calculi come with a gradual guarantee. All the results have been formalized in the Coq theorem prover.
Four species of the genus Longidorus were recovered from southern (Bushehr province) and southeastern (Southern Khorasan province) Iran. The first species, L. paratabrizicus n. sp. represents a new member to the genus and is characterised by 4.8–5.6 mm long females with anteriorly flattened lip region separated from the rest of the body by depression, amphidial fovea pocket-shaped without lobes, tail conical, dorsally convex, ventrally almost straight with bluntly rounded tip and males in population. By having similar lip region and tail shape, the new species most closely resembles five species viz. L. artemisiae, L. globulicauda, L. patuxentensis, L. sturhani, and L. tabrizicus. It represents the cryptic form of the last species. The second species belongs to L. mirus, recovered in both southern and southeastern Iran, representing the first record of the species after its original description. As an update to the characteristics of this species, it’s all juvenile developmental stages were recovered and described. The criteria to separate L. mirus from two closely related species, L. auratus and L. africanus, are discussed. The third species belongs to L. persicus, a new record in southern Iran. The fourth species, L. orientalis was recovered in high population density in association with date palm trees in Bushehr province. The phylogenetic relationships of the new species and recovered populations of L. mirus and L. persicus were reconstructed using two ribosomal markers and the resulted topologies were discussed.
Headache as a presenting symptom is commonly encountered by the emergency department (ED) physician. The differential diagnosis of headaches is extensive and the etiologies can range from benign to life-threatening. These patients can pose a diagnostic and therapeutic challenge to the treating clinician. This chapter encapsulates the clinical approach, appropriate evaluation, and treatment options in patients presenting with the complaint of headache.
We study the effect of negatively charged dust on the magnetic-field-aligned polarisation electrostatic field ($\boldsymbol {E}_{\parallel }$) using Cassini's RPWS/LP in situ measurements during the ‘ring-grazing’ orbits. We derive a general expression for $\boldsymbol {E}_{\parallel }$ and estimate for the first time in situ$\lVert \boldsymbol {E}_{\parallel } \rVert$ (approximately $10^{-5} \, \text {V}\, \text {m}^{-1}$) near the Janus and Epimetheus rings. We further demonstrate that the presence of the negatively charged dust close to the ring plane ($\vert \text {Z} \vert \lesssim 0.11 \, \text {R}_{s}$) amplifies $\lVert \boldsymbol {E}_{\parallel } \rVert$ by at least one order of magnitude and reverses its direction due to the effect of the charged dust gravitational and inertial forces. Such reversal confines the electrons at the magnetic equator within the dusty region, around $0.047 \, \text {R}_{s}$ above the ring plane. Furthermore, we discuss the role of the collision terms, in particular the ion–dust drag force, in amplifying $\boldsymbol {E}_{\parallel }$. These results imply that the charged dust, as small as nanometres in size, can have a significant influence on the plasma transport, in particular ambipolar diffusion along the magnetic field lines, and so their presence must be taken into account when studying such dynamical processes.
Early life adversity (ELA) has been linked with increased arousal responses to threat, including increased amygdala reactivity. Effects of ELA on brain function are well recognized, and emerging evidence suggests that caregivers may influence how environmental stressors impact children’s brain function. We investigated the hypothesis that positive interaction between mother and child can buffer against ELA effects on children’s neural responses to threat, and related symptoms. N = 53 mother–child pairs (children ages 8–14 years) were recruited from an urban population at high risk for violence exposure. Maternal caregiving was measured using the Parenting Questionnaire and in a cooperation challenge task. Children viewed fearful and neutral face stimuli during functional magnetic resonance imaging. Children who experienced greater violence at home showed amygdala sensitization, whereas children experiencing more school and community violence showed amygdala habituation. Sensitization was in turn linked with externalizing symptoms. However, maternal warmth was associated with a normalization of amygdala sensitization in children, and fewer externalizing behaviors prospectively up to 1 year later. Findings suggested that the effects of violence exposure on threat-related neural circuitry depend on trauma context (inside or outside the home) and that primary caregivers can increase resilience.
This paper describes a computational investigation of multimode instability growth and multimaterial mixing induced by multiple shock waves in a high-energy-density (HED) environment, where pressures exceed 1 Mbar. The simulations are based on a series of experiments performed at the National Ignition Facility (NIF) and designed as an HED analogue of non-HED shock-tube studies of the Richtmyer–Meshkov instability and turbulent mixing. A three-dimensional computational modelling framework is presented. It treats many complications absent from canonical non-HED shock-tube flows, including distinct ion and free-electron internal energies, non-ideal equations of state, radiation transport and plasma-state mass diffusivities, viscosities and thermal conductivities. The simulations are tuned to the available NIF data, and traditional statistical quantities of turbulence are analysed. Integrated measures of turbulent kinetic energy and enstrophy both increase by over an order of magnitude due to reshock. Large contributions to enstrophy production during reshock are seen from both the baroclinic source and enstrophy–dilatation terms, highlighting the significance of fluid compressibility in the HED regime. Dimensional analysis reveals that Reynolds numbers and diffusive Péclet numbers in the HED flow are similar to those in a canonical non-HED analogue, but conductive Péclet numbers are much smaller in the HED flow due to efficient thermal conduction by free electrons. It is shown that the mechanism of electron thermal conduction significantly softens local spanwise gradients of both temperature and density, which causes a minor but non-negligible decrease in enstrophy production and small-scale mixing relative to a flow without this mechanism.
This study assesses the prevalence of childhood undernutrition from 2001 to 2016 and estimate projections of undernutrition for 2016–2030 in Nepal.
Design:
The study used data from four rounds of a cross-sectional survey of Nepal Demographic and Health Survey (NDHS) conducted in 2001, 2006, 2011 and 2016. Descriptive analyses were conducted to calculate prevalence, binary logistic regression was used to test the significance of trends over time and autoregressive integrated moving average model was used to forecast the prevalence of childhood undernutrition.
Settings:
The children and household member datasets from four NDHS were merged to assess the trends of childhood undernutrition in Nepal.
Participants:
A total of 16 613 children (8399 male and 8214 female) under 5 years of age were selected for anthropometric measurements using a stratified cluster random sampling method.
Results:
Overall results show a decline in prevalence of stunting from 57·2 % to 35·8 % (P < 0·001), underweight from 42·7 % to 27 % (P < 0·001) and wasting from 11·2 % to 9·7 % (P < 0·05) from 2001 to 2016. However, different population subgroups have a higher prevalence of undernutrition than national average. Further, the analyses show that the prevalence of stunting will decline to 14·3 % and wasting to 8·4 % by 2030.
Conclusion:
A remarkable decrease in the prevalence of stunting and underweight has been observed over the last 15 years. Nepal is likely to achieve the nutritional targets for stunting but not for wasting by 2030. Given large subpopulation variations, further improvement in undernutrition require more specific, targeted and localised programmes.
The chapter focuses on network flow problems, which form a very important part of practical applications.Routing, distribution, and scheduling problems often belong to this category of formulations, while a large number of other optimization problems encountered in diverse areas of applications may contain elements of network flow problems.
Quadratic multidimensional functions play a very important role in the understanding of general nonlinear functions. Convexity of quadratic functions is linked in a natural way from its geometrical definition all the way to the properties of its matrix eigenspectrum.Indeed, to second order expansion, and close to the expansion point, any nonlinear function can be approximated by a quadratic – thus providing a crucial link and understanding of the local behaviour and convexity properties of general functions.
The chapter introduces basic optimization concepts, and motivates the use of optimization models and methods to engineering and scientific practice applications.It establishes key concepts, such as the types of variables, arguments to an optimization problem as continuous, integer and control functions (for optimal control problems).Further, it introduces types of optimization problems according to their formulation (such as multiobjective, bilevel, stochastic optimization problems)
This chapter introduces concepts of norm-1 and infinity norm fitting, both in terms of their own merit as useful fitting techniques, apart from least squares, but also importantly to teach how optimization problems that seem hard to solve (such as by being non-differentiable) can be reformulated effectively into easier ones that can be handled by standard solution methods – in this case by LP solvers.
Unconstrained multivariate gradient-based minimization is introduced by means of search direction-producing methods, focusing on steepest descent and Newton's method.Issues with both methods are discussed, highlighting what happens in the case of locally nonconvex functions, particularly in Newton's method.Linesearch is introduced, effectively rendering multidimensional optimization into a sequence of one-dimensional searches along the ray of the search directions produced.Linesearch criteria are discussed, such as the Armijo first condition, and efficient ways to cut the step size are discussed.
Duality theory has a central role in constrained optimization, both from a theoretical point of view and to enable understanding of solution methods and problem reformulations for special classes of problems.Such applications are presented in the next chapter on Lagrangian relaxation and Lagrangian decomposition.In this chapter, the fundamental background for duality theory is presented along with a basic introduction of key concepts related to it.