We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
OBJECTIVES/GOALS: Motoric cognitive risk (MCR) is a pre-dementia syndrome characterized by slow gait and subjective cognitive complaints. In the Atherosclerosis Risk in Communities (ARIC) study, we aim to (1) identify plasma proteins and protein modules associated with MCR and (2) compare the proteomic signature of MCR to that of mild cognitive impairment (MCI). METHODS/STUDY POPULATION: Nondemented ARIC participants were classified by MCR status (yes/no) according to a memory questionnaire and 4-meter walk. MCI status (yes/no) was classified by expert diagnosis using standardized criteria. We measured 4,877 proteins in plasma collected at ARIC Visit 5 (late-life) and Visit 2 (midlife) utilizing the SomaScan4 proteomic assay. Multivariable logistic regression”adjusted for demographic variables, kidney function, cardiovascular risk factors, and APOE4 status”related each protein to MCR at late-life. An FDR corrected P RESULTS/ANTICIPATED RESULTS: Proteome-wide association study among 4076 ARIC participants (mean age=75; 58% women, 17% Black, 4% MCR+, 21% MCI+; MCR+ and MCI+ groups overlapped) at late-life identified 26 MCR-associated proteins involved in metabolism, vascular/visceral smooth muscle, and extracellular matrix organization. At an uncorrected P DISCUSSION/SIGNIFICANCE: This proteomic characterization of MCR identifies novel plasma proteins and networks, both distinct from and overlapping with those of MCI, thus highlighting the partially divergent mechanisms underlying these pre-dementia syndromes. These findings may be leveraged toward dementia prognostication and targeted therapeutic approaches.
Recent fossil discoveries from New Zealand have revealed a remarkably diverse assemblage of Paleocene stem group penguins. Here, we add to this growing record by describing nine new penguin specimens from the late Paleocene (upper Teurian local stage; 55.5–59.5 Ma) Moeraki Formation of the South Island, New Zealand. The largest specimen is assigned to a new species, Kumimanu fordycei n. sp., which may have been the largest penguin ever to have lived. Allometric regressions based on humerus length and humerus proximal width of extant penguins yield mean estimates of a live body mass in the range of 148.0 kg (95% CI: 132.5 kg–165.3 kg) and 159.7 kg (95% CI: 142.6 kg–178.8 kg), respectively, for Kumimanu fordycei. A second new species, Petradyptes stonehousei n. gen. n. sp., is represented by five specimens and was slightly larger than the extant emperor penguin Aptenodytes forsteri. Two small humeri represent an additional smaller unnamed penguin species. Parsimony and Bayesian phylogenetic analyses recover Kumimanu and Petradyptes crownward of the early Paleocene mainland NZ taxa Waimanu and Muriwaimanu, but stemward of the Chatham Island taxon Kupoupou. These analyses differ, however, in the placement of these two taxa relative to Sequiwaimanu, Crossvallia, and Kaiika. The massive size and placement of Kumimanu fordycei close to the root of the penguin tree provide additional support for a scenario in which penguins reached the upper limit of sphenisciform body size very early in their evolutionary history, while still retaining numerous plesiomorphic features of the flipper.
While unobscured and radio-quiet active galactic nuclei are regularly being found at redshifts
$z > 6$
, their obscured and radio-loud counterparts remain elusive. We build upon our successful pilot study, presenting a new sample of low-frequency-selected candidate high-redshift radio galaxies (HzRGs) over a sky area 20 times larger. We have refined our selection technique, in which we select sources with curved radio spectra between 72–231 MHz from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. In combination with the requirements that our GLEAM-selected HzRG candidates have compact radio morphologies and be undetected in near-infrared
$K_{\rm s}$
-band imaging from the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, we find 51 new candidate HzRGs over a sky area of approximately
$1200\ \mathrm{deg}^2$
. Our sample also includes two sources from the pilot study: the second-most distant radio galaxy currently known, at
$z=5.55$
, with another source potentially at
$z \sim 8$
. We present our refined selection technique and analyse the properties of the sample. We model the broadband radio spectra between 74 MHz and 9 GHz by supplementing the GLEAM data with both publicly available data and new observations from the Australia Telescope Compact Array at 5.5 and 9 GHz. In addition, deep
$K_{\rm s}$
-band imaging from the High-Acuity Widefield K-band Imager (HAWK-I) on the Very Large Telescope and from the Southern Herschel Astrophysical Terahertz Large Area Survey Regions
$K_{\rm s}$
-band Survey (SHARKS) is presented for five sources. We discuss the prospects of finding very distant radio galaxies in our sample, potentially within the epoch of reionisation at
$z \gtrsim 6.5$
.
Area-level residential instability (ARI), an index of social fragmentation, has been shown to explain the association between urbanicity and psychosis. Urban upbringing has been shown to be associated with decreased gray matter volumes (GMV)s of brain regions corresponding to the right caudal middle frontal gyrus (CMFG) and rostral anterior cingulate cortex (rACC).
Objectives
We hypothesize that greater ARI will be associated with reduced right posterior CMFG and rACC GMVs.
Methods
Data were collected at baseline as part of the North American Prodrome Longitudinal Study. Counties where participants resided during childhood were geographically coded using the US Censuses to area-level factors. ARI was defined as the percentage of residents living in a different house five years ago. Generalized linear mixed models tested associations between ARI and GMVs.
Results
This study included 29 HC and 64 CHR-P individuals who were aged 12 to 24 years, had remained in their baseline residential area, and had magnetic resonance imaging scans. ARI was associated with reduced right CMFG (adjusted β = -0.258; 95% CI = -0.502 – -0.015) and right rACC volumes (adjusted β = -0.318; 95% CI = -0.612 – -0.023). The interaction terms (ARI X diagnostic group) in the prediction of both brain regions were not significant, indicating that the relationships between ARI and regional brain volumes held for both CHR-P and HCs.
Conclusions
Like urban upbringing, ARI may be an important social environmental characteristic that adversely impacts brain regions related to schizophrenia.
We describe a new low-frequency wideband radio survey of the southern sky. Observations covering 72–231 MHz and Declinations south of $+30^\circ$ have been performed with the Murchison Widefield Array “extended” Phase II configuration over 2018–2020 and will be processed to form data products including continuum and polarisation images and mosaics, multi-frequency catalogues, transient search data, and ionospheric measurements. From a pilot field described in this work, we publish an initial data release covering 1,447$\mathrm{deg}^2$ over $4\,\mathrm{h}\leq \mathrm{RA}\leq 13\,\mathrm{h}$, $-32.7^\circ \leq \mathrm{Dec} \leq -20.7^\circ$. We process twenty frequency bands sampling 72–231 MHz, with a resolution of 2′–45′′, and produce a wideband source-finding image across 170–231 MHz with a root mean square noise of $1.27\pm0.15\,\mathrm{mJy\,beam}^{-1}$. Source-finding yields 78,967 components, of which 71,320 are fitted spectrally. The catalogue has a completeness of 98% at ${{\sim}}50\,\mathrm{mJy}$, and a reliability of 98.2% at $5\sigma$ rising to 99.7% at $7\sigma$. A catalogue is available from Vizier; images are made available via the PASA datastore, AAO Data Central, and SkyView. This is the first in a series of data releases from the GLEAM-X survey.
We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535–571, which underwent a prolonged outburst beginning on 2017 September 2. We monitored MAXI J1535–571 with the Murchison Widefield Array (MWA) at frequencies from 119 to 186 MHz over six epochs from 2017 September 20 to 2017 October 14. The source was quasi-simultaneously observed over the frequency range 0.84–19 GHz by UTMOST (the Upgraded Molonglo Observatory Synthesis Telescope) the Australian Square Kilometre Array Pathfinder (ASKAP), the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 2017 September 23, we measured the source size to be $34\pm1$ mas. During the brightest radio flare on 2017 September 21, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle ($\phi_{\rm op} = 4.5\pm1.2^{\circ}$) and the magnetic field strength ($B_{\rm s} = 104^{+80}_{-78}$ mG). Our fitted magnetic field strength agrees reasonably well with that inferred from the standard equipartition approach, suggesting the jet knot to be close to equipartition. Our study highlights the capabilities of the Australian suite of radio telescopes to jointly probe radio jets in black hole X-ray binaries via simultaneous observations over a broad frequency range, and with differing angular resolutions. This suite allows us to determine the physical properties of X-ray binary jets. Finally, our study emphasises the potential contributions that can be made by the low-frequency part of the Square Kilometre Array (SKA-Low) in the study of black hole X-ray binaries.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination $<\!{+}30^{\circ}$) with an angular resolution of ${\approx}2$ arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median $z \approx 0.064$) radio sources with $S_{200\,\mathrm{MHz}} > 55$ mJy across an area of ${\approx}16\,700\,\mathrm{deg}^{2}$. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and ${\sim}1$ GHz. For the AGN, the median spectral index between 200 MHz and ${\sim}1$ GHz, $\alpha_{\mathrm{high}}$, is $-0.600 \pm 0.010$ (where $S \propto \nu^{\alpha}$) and the median spectral index within the GLEAM band, $\alpha_{\mathrm{low}}$, is $-0.704 \pm 0.011$. For the SF galaxies, the median value of $\alpha_{\mathrm{high}}$ is $-0.650 \pm 0.010$ and the median value of $\alpha_{\mathrm{low}}$ is $-0.596 \pm 0.015$. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies ($\alpha_{\mathrm{low}} < -1.2$). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
We present the South Galactic Pole (SGP) data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. These data combine both years of GLEAM observations at 72–231 MHz conducted with the Murchison Widefield Array (MWA) and cover an area of 5 113$\mathrm{deg}^{2}$ centred on the SGP at $20^{\mathrm{h}} 40^{\mathrm{m}} < \mathrm{RA} < 05^{\mathrm{h}} 04^{\mathrm{m}}$ and $-48^{\circ}< \mathrm{Dec} < -2^{\circ} $. At 216 MHz, the typical rms noise is ${\approx}5$ mJy beam–1 and the angular resolution ${\approx}2$ arcmin. The source catalogue contains a total of 108 851 components above $5\sigma$, of which 77% have measured spectral indices between 72 and 231 MHz. Improvements to the data reduction in this release include the use of the GLEAM Extragalactic catalogue as a sky model to calibrate the data, a more efficient and automated algorithm to deconvolve the snapshot images, and a more accurate primary beam model to correct the flux scale. This data release enables more sensitive large-scale studies of extragalactic source populations as well as spectral variability studies on a one-year timescale.
During the past two decades, several reports have documented substantial support from clinicians, policy-makers, and the general public for the use of advance directives, yet studies continue to find that only a minority of individuals (10 to 25 percent) have completed these legal documents. Advance directives are written instructions, such as living wills or durable powers of attorney for health care, which describe an individual's medical treatment wishes in the event that individual becomes incapacitated in the future. The completion and use of advance directives is one of several components of the broader activity of advance care planning, that is, the overall planning and communication of personal wishes concerning future medical care.
In December 1991, the federal Patient Self-Determination Act (PSDA) became effective. Promoted as a federal initiative to enhance an individual's control over medical treatment decision making and, therefore, patient autonomy and self-determination, PSDA placed several new requirements on health care organizations receiving Medicare or Medicaid payments.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The low-frequency linearly polarised radio source population is largely unexplored. However, a renaissance in low-frequency polarimetry has been enabled by pathfinder and precursor instruments for the Square Kilometre Array. In this second paper from the POlarised GaLactic and Extragalactic All-Sky MWA Survey-the POlarised GLEAM Survey, or POGS-we present the results from our all-sky MWA Phase I Faraday Rotation Measure survey. Our survey covers nearly the entire Southern sky in the Declination range $-82^\circ$ to $+30^\circ$ at a resolution between around three and seven arcminutes (depending on Declination) using data in the frequency range 169−231 MHz. We have performed two targeted searches: the first covering 25 489 square degrees of sky, searching for extragalactic polarised sources; the second covering the entire sky South of Declination $+30^\circ$, searching for known pulsars. We detect a total of 517 sources with 200 MHz linearly polarised flux densities between 9.9 mJy and 1.7 Jy, of which 33 are known radio pulsars. All sources in our catalogues have Faraday rotation measures in the range $-328.07$ to $+279.62$ rad m−2. The Faraday rotation measures are broadly consistent with results from higher-frequency surveys, but with typically more than an order of magnitude improvement in the precision, highlighting the power of low-frequency polarisation surveys to accurately study Galactic and extragalactic magnetic fields. We discuss the properties of our extragalactic and known-pulsar source population, how the sky distribution relates to Galactic features, and identify a handful of new pulsar candidates among our nominally extragalactic source population.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
We have detected 27 new supernova remnants (SNRs) using a new data release of the GLEAM survey from the Murchison Widefield Array telescope, including the lowest surface brightness SNR ever detected, G 0.1 – 9.7. Our method uses spectral fitting to the radio continuum to derive spectral indices for 26/27 candidates, and our low-frequency observations probe a steeper spectrum population than previously discovered. None of the candidates have coincident WISE mid-IR emission, further showing that the emission is non-thermal. Using pulsar associations we derive physical properties for six candidate SNRs, finding G 0.1 – 9.7 may be younger than 10 kyr. Sixty per cent of the candidates subtend areas larger than 0.2 deg2 on the sky, compared to < 25% of previously detected SNRs. We also make the first detection of two SNRs in the Galactic longitude range 220°–240°.
This work makes available a further $2\,860~\text{deg}^2$ of the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey, covering half of the accessible galactic plane, across 20 frequency bands sampling 72–231 MHz, with resolution $4\,\text{arcmin}-2\,\text{arcmin}$. Unlike previous GLEAM data releases, we used multi-scale CLEAN to better deconvolve large-scale galactic structure. For the galactic longitude ranges $345^\circ < l < 67^\circ$, $180^\circ < l < 240^\circ$, we provide a compact source catalogue of 22 037 components selected from a 60-MHz bandwidth image centred at 200 MHz, with RMS noise $\approx10-20\,\text{mJy}\,\text{beam}^{-1}$ and position accuracy better than 2 arcsec. The catalogue has a completeness of 50% at ${\approx}120\,\text{mJy}$, and a reliability of 99.86%. It covers galactic latitudes $1^\circ\leq|b|\leq10^\circ$ towards the galactic centre and $|b|\leq10^\circ$ for other regions, and is available from Vizier; images covering $|b|\leq10^\circ$ for all longitudes are made available on the GLEAM Virtual Observatory (VO).server and SkyView.
We examined the latest data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey covering 345° < l < 60° and 180° < l < 240°, using these data and that of the Widefield Infrared Survey Explorer to follow up proposed candidate Supernova Remnant (SNR) from other sources. Of the 101 candidates proposed in the region, we are able to definitively confirm ten as SNRs, tentatively confirm two as SNRs, and reclassify five as H ii regions. A further two are detectable in our images but difficult to classify; the remaining 82 are undetectable in these data. We also investigated the 18 unclassified Multi-Array Galactic Plane Imaging Survey (MAGPIS) candidate SNRs, newly confirming three as SNRs, reclassifying two as H ii regions, and exploring the unusual spectra and morphology of two others.
The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm3. The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester.
We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded bispectrum estimators are applied to 21 h of high-band (167–197 MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21-cm bispectrum may be accessible in less time than the 21-cm power spectrum for some wave modes, with detections in hundreds of hours.