We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Blood-based biomarkers represent a scalable and accessible approach for the detection and monitoring of Alzheimer’s disease (AD). Plasma phosphorylated tau (p-tau) and neurofilament light (NfL) are validated biomarkers for the detection of tau and neurodegenerative brain changes in AD, respectively. There is now emphasis to expand beyond these markers to detect and provide insight into the pathophysiological processes of AD. To this end, a reactive astrocytic marker, namely plasma glial fibrillary acidic protein (GFAP), has been of interest. Yet, little is known about the relationship between plasma GFAP and AD. Here, we examined the association between plasma GFAP, diagnostic status, and neuropsychological test performance. Diagnostic accuracy of plasma GFAP was compared with plasma measures of p-tau181 and NfL.
Participants and Methods:
This sample included 567 participants from the Boston University (BU) Alzheimer’s Disease Research Center (ADRC) Longitudinal Clinical Core Registry, including individuals with normal cognition (n=234), mild cognitive impairment (MCI) (n=180), and AD dementia (n=153). The sample included all participants who had a blood draw. Participants completed a comprehensive neuropsychological battery (sample sizes across tests varied due to missingness). Diagnoses were adjudicated during multidisciplinary diagnostic consensus conferences. Plasma samples were analyzed using the Simoa platform. Binary logistic regression analyses tested the association between GFAP levels and diagnostic status (i.e., cognitively impaired due to AD versus unimpaired), controlling for age, sex, race, education, and APOE e4 status. Area under the curve (AUC) statistics from receiver operating characteristics (ROC) using predicted probabilities from binary logistic regression examined the ability of plasma GFAP to discriminate diagnostic groups compared with plasma p-tau181 and NfL. Linear regression models tested the association between plasma GFAP and neuropsychological test performance, accounting for the above covariates.
Results:
The mean (SD) age of the sample was 74.34 (7.54), 319 (56.3%) were female, 75 (13.2%) were Black, and 223 (39.3%) were APOE e4 carriers. Higher GFAP concentrations were associated with increased odds for having cognitive impairment (GFAP z-score transformed: OR=2.233, 95% CI [1.609, 3.099], p<0.001; non-z-transformed: OR=1.004, 95% CI [1.002, 1.006], p<0.001). ROC analyses, comprising of GFAP and the above covariates, showed plasma GFAP discriminated the cognitively impaired from unimpaired (AUC=0.75) and was similar, but slightly superior, to plasma p-tau181 (AUC=0.74) and plasma NfL (AUC=0.74). A joint panel of the plasma markers had greatest discrimination accuracy (AUC=0.76). Linear regression analyses showed that higher GFAP levels were associated with worse performance on neuropsychological tests assessing global cognition, attention, executive functioning, episodic memory, and language abilities (ps<0.001) as well as higher CDR Sum of Boxes (p<0.001).
Conclusions:
Higher plasma GFAP levels differentiated participants with cognitive impairment from those with normal cognition and were associated with worse performance on all neuropsychological tests assessed. GFAP had similar accuracy in detecting those with cognitive impairment compared with p-tau181 and NfL, however, a panel of all three biomarkers was optimal. These results support the utility of plasma GFAP in AD detection and suggest the pathological processes it represents might play an integral role in the pathogenesis of AD.
Blood-based biomarkers offer a more feasible alternative to Alzheimer’s disease (AD) detection, management, and study of disease mechanisms than current in vivo measures. Given their novelty, these plasma biomarkers must be assessed against postmortem neuropathological outcomes for validation. Research has shown utility in plasma markers of the proposed AT(N) framework, however recent studies have stressed the importance of expanding this framework to include other pathways. There is promising data supporting the usefulness of plasma glial fibrillary acidic protein (GFAP) in AD, but GFAP-to-autopsy studies are limited. Here, we tested the association between plasma GFAP and AD-related neuropathological outcomes in participants from the Boston University (BU) Alzheimer’s Disease Research Center (ADRC).
Participants and Methods:
This sample included 45 participants from the BU ADRC who had a plasma sample within 5 years of death and donated their brain for neuropathological examination. Most recent plasma samples were analyzed using the Simoa platform. Neuropathological examinations followed the National Alzheimer’s Coordinating Center procedures and diagnostic criteria. The NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Measures of GFAP were log-transformed. Binary logistic regression analyses tested the association between GFAP and autopsy-confirmed AD status, as well as with semi-quantitative ratings of regional atrophy (none/mild versus moderate/severe) using binary logistic regression. Ordinal logistic regression analyses tested the association between plasma GFAP and Braak stage and CERAD neuritic plaque score. Area under the curve (AUC) statistics from receiver operating characteristics (ROC) using predicted probabilities from binary logistic regression examined the ability of plasma GFAP to discriminate autopsy-confirmed AD status. All analyses controlled for sex, age at death, years between last blood draw and death, and APOE e4 status.
Results:
Of the 45 brain donors, 29 (64.4%) had autopsy-confirmed AD. The mean (SD) age of the sample at the time of blood draw was 80.76 (8.58) and there were 2.80 (1.16) years between the last blood draw and death. The sample included 20 (44.4%) females, 41 (91.1%) were White, and 20 (44.4%) were APOE e4 carriers. Higher GFAP concentrations were associated with increased odds for having autopsy-confirmed AD (OR=14.12, 95% CI [2.00, 99.88], p=0.008). ROC analysis showed plasma GFAP accurately discriminated those with and without autopsy-confirmed AD on its own (AUC=0.75) and strengthened as the above covariates were added to the model (AUC=0.81). Increases in GFAP levels corresponded to increases in Braak stage (OR=2.39, 95% CI [0.71-4.07], p=0.005), but not CERAD ratings (OR=1.24, 95% CI [0.004, 2.49], p=0.051). Higher GFAP levels were associated with greater temporal lobe atrophy (OR=10.27, 95% CI [1.53,69.15], p=0.017), but this was not observed with any other regions.
Conclusions:
The current results show that antemortem plasma GFAP is associated with non-specific AD neuropathological changes at autopsy. Plasma GFAP could be a useful and practical biomarker for assisting in the detection of AD-related changes, as well as for study of disease mechanisms.
Female fertility is a complex trait with age-specific changes in spontaneous dizygotic (DZ) twinning and fertility. To elucidate factors regulating female fertility and infertility, we conducted a genome-wide association study (GWAS) on mothers of spontaneous DZ twins (MoDZT) versus controls (3273 cases, 24,009 controls). This is a follow-up study to the Australia/New Zealand (ANZ) component of that previously reported (Mbarek et al., 2016), with a sample size almost twice that of the entire discovery sample meta-analysed in the previous article (and five times the ANZ contribution to that), resulting from newly available additional genotyping and representing a significant increase in power. We compare analyses with and without male controls and show unequivocally that it is better to include male controls who have been screened for recent family history, than to use only female controls. Results from the SNP based GWAS identified four genomewide significant signals, including one novel region, ZFPM1 (Zinc Finger Protein, FOG Family Member 1), on chromosome 16. Previous signals near FSHB (Follicle Stimulating Hormone beta subunit) and SMAD3 (SMAD Family Member 3) were also replicated (Mbarek et al., 2016). We also ran the GWAS with a dominance model that identified a further locus ADRB2 on chr 5. These results have been contributed to the International Twinning Genetics Consortium for inclusion in the next GWAS meta-analysis (Mbarek et al., in press).
Implementation assessment plans are crucial for clinical trials to achieve their full potential. Without a proactive plan to implement trial results, it can take decades for one-fifth of effective interventions to be adopted into routine care settings. The Veterans Health Administration Office of Research and Development is undergoing a systematic transformation to embed implementation planning in research protocols through the Cooperative Studies Program, its flagship clinical research program. This manuscript has two objectives: 1) to introduce an Implementation Planning Assessment (IPA) Tool that any clinical trialist may use to facilitate post-trial implementation of interventions found to be effective and 2) to provide a case study demonstrating the IPA Tool’s use. The IPA Tool encourages study designers to initially consider rigorous data collection to maximize acceptability of the intervention by end-users. It also helps identify and prepare potential interested parties at local and national leadership levels to ensure, upon trial completion, interventions can be integrated into programs, technologies, and policies in a sustainable way. The IPA Tool can alleviate some of the overwhelming nature of implementation science by providing a practical guide based on implementation science principles for researchers desiring to scale up and spread effective, clinical trial-tested interventions to benefit patients.
OBJECTIVES/GOALS: #NAME? METHODS/STUDY POPULATION: Cell culture & protein identification: human T cells were purified from healthy blood, then activated & cultured for 5d. CAR-T cells were collected from infusion bags of cancer patients undergoing CAR-T. Silver staining of naive & activated healthy T-cell lysates was compared; B-II spectrin was upregulated and confirmed by Western blot. Migration assays: naive & activated T-cells were imaged during migration on ICAM-1 and ICAM-1 + CXCL12 coated plates. T-cells were transfected with BII-spectrin cDNA & the chemokine dependence of migration was compared with controls. In-vivo studies: in a melanoma mouse model, BII-spectrin transfected or control T-cells were injected; tumors were followed with serial imaging. Human patient records were examined to correlate endogenous BII-spectrin levels and CAR-T response. RESULTS/ANTICIPATED RESULTS: Activated T-cells downregulate the cytoskeletal protein B-II spectrin compared to naive cells, leading to chemokine-independent migration in in vitro assays and off-target trafficking when CAR-T cells are given in vivo. Restoration of B-II spectrin levels via transfection restores chemokine-dependence of activated T-cells. In a mouse melanoma model, control mice injected with standard activated T-cells showed fewer cells in the tumor site and more cells in the off-target organs (spleen, lungs) when compared to mice injected with B-II spectrin transfected cells. Furthermore, among 3 human patients undergoing CAR-T therapy, those with higher endogenous B-II spectrin levels experienced fewer side-effects, measured by the neurotoxicity and cytokine release syndrome grades. DISCUSSION/SIGNIFICANCE: A major hurdle to widespread CAR-T therapy for cancer is significant, often fatal side-effects. Our work shows that the protein B-II spectrin is downregulated during CAR-T production, and that restoring B-II spectrin levels decreases side-effects while increasing tumor clearance--hopefully translating to better CAR-T regimens for the future.
Anorexia nervosa (AN) is a psychiatric disorder with complex etiology, with a significant portion of disease risk imparted by genetics. Traditional genome-wide association studies (GWAS) produce principal evidence for the association of genetic variants with disease. Transcriptomic imputation (TI) allows for the translation of those variants into regulatory mechanisms, which can then be used to assess the functional outcome of genetically regulated gene expression (GReX) in a broader setting through the use of phenome-wide association studies (pheWASs) in large and diverse clinical biobank populations with electronic health record phenotypes.
Methods
Here, we applied TI using S-PrediXcan to translate the most recent PGC-ED AN GWAS findings into AN-GReX. For significant genes, we imputed AN-GReX in the Mount Sinai BioMe™ Biobank and performed pheWASs on over 2000 outcomes to test the clinical consequences of aberrant expression of these genes. We performed a secondary analysis to assess the impact of body mass index (BMI) and sex on AN-GReX clinical associations.
Results
Our S-PrediXcan analysis identified 53 genes associated with AN, including what is, to our knowledge, the first-genetic association of AN with the major histocompatibility complex. AN-GReX was associated with autoimmune, metabolic, and gastrointestinal diagnoses in our biobank cohort, as well as measures of cholesterol, medications, substance use, and pain. Additionally, our analyses showed moderation of AN-GReX associations with measures of cholesterol and substance use by BMI, and moderation of AN-GReX associations with celiac disease by sex.
Conclusions
Our BMI-stratified results provide potential avenues of functional mechanism for AN-genes to investigate further.
The utilization of remote sensing in agriculture has great potential to change the methods of field scouting for weeds. Previous remote sensing research has been focused on the ability to detect and differentiate between species. However, these studies have not addressed weed density variability throughout a field. Furthermore, the impact of changing phenology of crops and weeds within and between growing seasons has not been investigated. To address these research gaps, field studies were conducted in 2016 and 2017 at the Horticultural Crops Research Station near Clinton, NC. Two problematic weed species, Palmer amaranth (Amaranthus palmeri S. Watson) and large crabgrass [Digitaria sanguinalis (L.) Scop.], were planted at four densities in soybean [Glycine max (L.) Merr.]. Additionally, these weed densities were grown in the presence and absence of the crop to determine the influence of crop presence on the detection and discrimination of weed species and density. Hyperspectral data were collected over various phenological time points in each year. Differentiation between plant species and weed density was not consistent across cropping systems, phenology, or season. Weed species were distinguishable across more spectra when no soybean was present. In 2016, weed species were not distinguishable, while in 2017, differentiation occurred at 4 wk after planting (WAP) and 15 WAP when weeds were present with soybean. When soybean was not present, differentiation occurred only at 5 WAP in 2016 and at 3 WAP through 15 WAP in 2017. Differentiation between weed densities did occur in both years with and without soybean present, but weed density could be differentiated across more spectra when soybean was not present. This study demonstrates that weed and crop reflectance is dynamic throughout the season and that spectral reflectance can be affected by weed species and density.
Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed–shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC.
Dysfunction in major stress response systems during the acute aftermath of trauma may contribute to risk for developing posttraumatic stress disorder (PTSD). The current study investigated how PTSD diagnosis and symptom severity, depressive symptoms, and childhood trauma uniquely relate to diurnal neuroendocrine secretion (cortisol and alpha-amylase rhythms) in women who recently experienced interpersonal trauma compared to non-traumatized controls (NTCs).
Method
Using a longitudinal design, we examined diurnal cortisol and alpha-amylase rhythms in 98 young women (n = 57 exposed to recent interpersonal trauma, n = 41 NTCs). Participants provided saliva samples and completed symptom measures at baseline and 1-, 3-, and 6-month follow-up.
Results
Multilevel models (MLMs) revealed lower waking cortisol predicted the development of PTSD in trauma survivors and distinguished at-risk women from NTCs. Women with greater childhood trauma exposure exhibited flatter diurnal cortisol slopes. Among trauma-exposed individuals, lower waking cortisol levels were associated with higher concurrent PTSD symptom severity. Regarding alpha-amylase, MLMs revealed women with greater childhood trauma exposure exhibited higher waking alpha-amylase and slower diurnal alpha-amylase increase.
Conclusions
Results suggest lower waking cortisol in the acute aftermath of trauma may be implicated in PTSD onset and maintenance. Findings also suggest childhood trauma may predict a different pattern of dysfunction in stress response systems following subsequent trauma exposure than the stress system dynamics associated with PTSD risk; childhood trauma appears to be associated with flattened diurnal cortisol and alpha-amylase slopes, as well as higher waking alpha-amylase.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
In 829 hospital encounters for patients with COVID-19, 73.2% included orders for antibiotics; however, only 1.8% had respiratory cultures during the first 3 hospital days isolating bacteria. Case–control analysis of 30 patients and 96 controls found that each antibiotic day increased the risk of isolating multidrug-resistant gram-negative bacteria (MDR-GNB) in respiratory cultures by 6.5%.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
This study obtained calendar dates by radiocarbon accelerator mass spectrometry (14C AMS) dating sequential tree-rings of wooden support posts from the buried remains of traditional Kitkahahki Pawnee earthlodges preserved at an archaeological site on the Central Great Plains, USA. The tree-ring segments from the site were dendrochronologically analyzed prior to this study, but the cross-matched site chronology could not be definitively cross-dated and was thus “floating” in time. Our study represents the first floating tree-ring chronology from the Great Plains to be anchored in time by means of independent radiocarbon analysis. Three specimens were analyzed and dated to 1724–1774 CE (82.0% probability), 1774–1794 CE (95.4% probability), and 1800–1820 CE (95.4% probability). These dates correspond to the hypothetical timing of Kitkahahki ethnogensis, the main phase of village growth in the area, and a later reoccupation during a turbulent period in regional history. The results of this study conform to a scenario in which chaotic social conditions correspond to an increase in residential mobility between the core of Pawnee territory and a southern frontier in the Republican River valley.
Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.
Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years.
The effect of plant phenology and canopy structure of four crops and four weed species on reflectance spectra were evaluated in 2016 and 2017 using in situ spectroscopy. Leaf-level and canopy-level reflectance were collected at multiple phenologic time points in each growing season. Reflectance values at 2 wk after planting (WAP) in both years indicated strong spectral differences between species across the visible (VIS; 350–700 nm), near-infrared (NIR; 701–1,300 nm), shortwave-infrared I (SWIR1; 1,301–1,900 nm), and shortwave-infrared II (SWIR2; 1,901–2,500 nm) regions. Results from this study indicate that plant spectral reflectance changes with plant phenology and is influenced by plant biophysical characteristics. Canopy-level differences were detected in both years across all dates except for 1 WAP in 2017. Species with similar canopy types (e.g., broadleaf prostrate, broadleaf erect, or grass/sedge) were more readily discriminated from species with different canopy types. Asynchronous phenology between species also resulted in spectral differences between species. SWIR1 and SWIR2 wavelengths are often not included in multispectral sensors but should be considered for species differentiation. Results from this research indicate that wavelengths in SWIR1 and SWIR2 in conjunction with VIS and NIR reflectance can provide differentiation across plant phenologies and, therefore should be considered for use in future sensor technologies for species differentiation.
Balloon aortic valvuloplasty and open surgical valvotomy are procedures to treat neonatal aortic stenosis, and there is controversy as to which method has superior outcomes.
Methods:
We reviewed the records of patients at our institution since 2000 who had a balloon aortic valvuloplasty or surgical valvotomy via an open commissurotomy prior to 2 months of age.
Results:
Forty patients had balloon aortic valvuloplasty and 15 patients had surgical valvotomy via an open commissurotomy. There was no difference in post-procedure mean gradient by transthoracic echocardiogram, which were 25.8 mmHg for balloon aortic valvuloplasty and 26.2 mmHg for surgical valvotomy, p = 0.87. Post-procedure, 15% of balloon aortic valvuloplasty patients had moderate aortic insufficiency and 2.5% of patients had severe aortic insufficiency, while no surgical valvotomy patients had moderate or severe aortic insufficiency. The average number of post-procedure hospital days was 14.2 for balloon aortic valvuloplasty and 19.8 for surgical valvotomy (p = 0.52). Freedom from re-intervention was 69% for balloon aortic valvuloplasty and 67% for surgical valvotomy at 1 year, and 43% for balloon aortic valvuloplasty and 67% for surgical valvotomy at 5 years (p = 0.60).
Conclusions:
Balloon aortic valvuloplasty and surgical valvotomy provide similar short-term reduction in valve gradient. Balloon aortic valvuloplasty has a slightly shorter but not statistically significant hospital stay. Freedom from re-intervention is similar at 1 year. At 5 years, it is slightly higher in surgical valvotomy, though not statistically different. Balloon aortic valvuloplasty had a higher incidence of significant aortic insufficiency. Long-term comparisons cannot be made given the lack of long-term follow-up with surgical valvotomy.