We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment.
Aims
To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder.
Method
This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework.
Results
The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data.
Conclusions
Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
Variation in interference relationships have been shown for a number of crop-weed associations and may have an important effect on the implementation of decision support systems for weed management. Multiyear field experiments were conducted at eight locations to determine the stability of corn-foxtail interference relationships across years and locations. Two coefficients (I and A) of a rectangular hyperbola equation were estimated for each data set using nonlinear regression procedures. The I and A coefficients represent percent corn yield loss as foxtail density approaches zero and maximum percent corn yield loss, respectively. The coefficient I was stable across years at two locations and varied across years at four locations. Maximum yield loss (A) varied between years at one location. Both coefficients varied among locations. Although 3 to 4 foxtail plants m−-1 row was a conservative estimate of the single-year economic threshold (Tc) of foxtail density, variation in I and A resulted in a large variation in Tc. Therefore, the utility of using common coefficient estimates to predict future crop yield loss from foxtail interference between years or among locations within a region is limited.
Variation in crop–weed interference relationships has been shown for a number of crop–weed mixtures and may have an important influence on weed management decision-making. Field experiments were conducted at seven locations over 2 yr to evaluate variation in common lambsquarters interference in field corn and whether a single set of model parameters could be used to estimate corn grain yield loss throughout the northcentral United States. Two coefficients (I and A) of a rectangular hyperbola were estimated for each data set using nonlinear regression analysis. The I coefficient represents corn yield loss as weed density approaches zero, and A represents maximum percent yield loss. Estimates of both coefficients varied between years at Wisconsin, and I varied between years at Michigan. When locations with similar sample variances were combined, estimates of both I and A varied. Common lambsquarters interference caused the greatest corn yield reduction in Michigan (100%) and had the least effect in Minnesota, Nebraska, and Indiana (0% yield loss). Variation in I and A parameters resulted in variation in estimates of a single-year economic threshold (0.32 to 4.17 plants m−1 of row). Results of this study fail to support the use of a common yield loss–weed density function for all locations.
To examine the quantitative relationship between sugar intake and the progressive development of dental caries.
Design
A critical in-depth review of international studies was conducted. Methods included reassessing relevant studies from the most recent systematic review on the relationship between levels of sugars and dental caries. Reanalysis of dose–response relationships between dietary sugars and caries incidence in teeth with different levels of caries susceptibility in children was done using data from Japanese studies conducted by Takeuchi and co-workers.
Setting
Global, with emphasis on marked differences in both national sugar intake and fluoride use and preferably where one factor such as sugar intake changed progressively without changes in other factors over a decade or more.
Subjects
Children aged 6 years or more and adults.
Results
Caries occurred in both resistant and susceptible teeth of children when sugar intakes were only 2–3 % of energy intake, provided that the teeth had been exposed to sugars for >3 years. Despite increased enamel resistance after tooth eruption, there was a progressive linear increase in caries throughout life, explaining the higher rates of caries in adults than in children. Fluoride affects progression of caries development but there still is a pandemic prevalence of caries in populations worldwide.
Conclusions
Previous analyses based on children have misled public health analyses on sugars. The recommendation that sugar intakes should be ≤10 % of energy intake is no longer acceptable. The much greater adult burden of dental caries highlights the need for very low sugar intakes throughout life, e.g. 2–3 % of energy intake, whether or not fluoride intake is optimum.
A new species, Oeneis excubitor, is described. This species has male valvae similar to those of Oeneis melissa and Oeneis jutta but the wing pattern is roughly similar to that of Oeneis chryxus.
A new species, Colias johanseni, is described. This species has male androconia similar to Colias meadii Edwards, 1871, and many palaearctic, neotropical, and ethiopian species, but the wing pattern is generally similar to that of Colias hecla Lefèbvre, 1836. Thus far, it has been found only on dry tundra at Bernard Harbour, N.W.T., Canada.