We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During the investigation of parasitic pathogens of Mytilus coruscus, infection of a Perkinsus-like protozoan parasite was detected by alternative Ray's Fluid Thioglycolate Medium (ARFTM). The diameter of hypnospores or prezoosporangia was 8–27 (15.6 ± 4.0, n = 111) μm. The prevalence of the Perkinsus-like species in M. coruscus was 25 and 12.5% using ARFTM and PCR, respectively. The ITS1-5.8S-ITS2 fragments amplified by PCR assay had 100% homology to that of P. beihaiensis, suggesting that the protozoan parasite was P. beihaisensis and M. coruscus was its new host in East China Sea (ECS). Histological analysis showed the presence of trophozoites of P. beihaiensis in gill, mantle and visceral mass, and the schizonts only found in visceral mass. Perkinsus beihaiensis infection led to inflammatory reaction of hemocyte and the destruction of digestive tubules in visceral mass, which had negative effect on health of the farmed M. coruscus and it deserves more attention.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
Previous literature finds anomalies are at least as prevalent in developed markets as in emerging markets; namely, the global anomaly puzzle. We show that while market development and information diffusion are linearly related, information diffusion has a nonlinear impact on anomalies. This is consistent with theoretical developments concerning the process of information diffusion. In extremely low-efficiency regimes, without newswatchers sowing the seeds of price discovery and ensuring the long-run convergence of price to fundamentals, initial mispricing and subsequent correction will not occur. The concentration of emerging countries in low-efficiency regimes provides an explanation to the puzzle.
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
In this paper, we present a new nonparametric method for estimating a conditional quantile function and develop its weak convergence theory. The proposed estimator is computationally easy to implement and automatically ensures quantile monotonicity by construction. For inference, we propose to use a residual bootstrap method. Our Monte Carlo simulations show that this new estimator compares well with the check-function-based estimator in terms of estimation mean squared error. The bootstrap confidence bands yield adequate coverage probabilities. An empirical example uses a dataset of Canadian high school graduate earnings, illustrating the usefulness of the proposed method in applications.
The early identification and prediction of hand-foot-and-mouth disease (HFMD) play an important role in the disease prevention and control. However, suitable models are different in regions due to the differences in geography, social economy factors. We collected data associated with daily reported HFMD cases and weather factors of Zibo city in 2010~2019 and used the generalised additive model (GAM) to evaluate the effects of weather factors on HFMD cases. Then, GAM, support vectors regression (SVR) and random forest regression (RFR) models are used to compare predictive results. The annual average incidence was 129.72/100 000 from 2010 to 2019. Its distribution showed a unimodal trend, with incidence increasing from March, peaking from May to September. Our study revealed the nonlinear relationship between temperature, rainfall and relative humidity and HFMD cases and based on the predictive result, the performances of three models constructed ranked in descending order are: SVR > GAM> RFR, and SVR has the smallest prediction errors. These findings provide quantitative evidence for the prediction of HFMD for special high-risk regions and can help public health agencies implement prevention and control measures in advance.
The pandemic of coronavirus disease 2019 (COVID-19) has posed serious challenges. It is vitally important to further clarify the epidemiological characteristics of the COVID-19 outbreak for future study and prevention and control measures. Epidemiological characteristics and spatial−temporal analysis were performed based on COVID-19 cases from 21 January 2020 to 1 March 2020 in Shandong Province, and close contacts were traced to construct transmission chains. A total of 758 laboratory-confirmed cases were reported in Shandong. The sex ratio was 1.27: 1 (M: F) and the median age was 42 (interquartile range: 32–55). The high-risk clusters were identified in the central, eastern and southern regions of Shandong from 25 January 2020 to 10 February 2020. We rebuilt 54 transmission chains involving 209 cases, of which 52.2% were family clusters, and three widespread infection chains were elaborated, occurring in Jining, Zaozhuang and Liaocheng, respectively. The geographical and temporal disparity may alert public health agencies to implement specific measures in regions with different risk, and should attach importance on how to avoid household and community transmission.
Porphyromonas gingivalis has been linked to the development and progression of oesophageal squamous cell carcinoma (ESCC), and is considered to be a high-risk factor for ESCC. Currently, the commonly used methods for P. gingivalis detection are culture or DNA extraction-based, which are either time and labour intensive especially for high-throughput applications. We aimed to establish and evaluate a rapid and sensitive direct quantitative polymerase chain reaction (qPCR) protocol for the detection of P. gingivalis without DNA extraction which is suitable for large-scale epidemiological studies. Paired gingival swab samples from 192 subjects undergoing general medical examinations were analysed using two direct and one extraction-based qPCR assays for P. gingivalis. Tris-EDTA buffer-based direct qPCR (TE-direct qPCR), lysis-based direct qPCR (lysis-direct qPCR) and DNA extraction-based qPCR (kit-qPCR) were used, respectively, in 192, 132 and 60 of these samples for quantification of P. gingivalis. The sensitivity and specificity of TE-direct qPCR was 95.24% and 100% compared with lysis-direct qPCR, which was 100% and 97.30% when compared with kit-qPCR; TE-direct qPCR had an almost perfect agreement with lysis-direct qPCR (κ = 0.954) and kit-qPCR (κ = 0.965). Moreover, the assay time used for TE-direct qPCR was 1.5 h. In conclusion, the TE-direct qPCR assay is a simple and efficient method for the quantification of oral P. gingivalis and showed high sensitivity and specificity compared with routine qPCR.
An experiment was conducted to determine the effects of supplementing different amounts of daidzein in a diet on the growth performance, blood biochemical parameters and meat quality of finishing beef cattle. Thirty finishing Xianan steers were distributed in three groups equilibrated by weight and fed three different dietary treatments (concentrate ratio = 80%): (1) control; (2) 500 mg/kg daidzein and (3) 1000 mg/kg daidzein, respectively. Steers were slaughtered after an 80-day feeding trial. Results showed that daidzein supplementation had no effect on the final body weight, average daily gain and feed conversion rate of steers. Steers fed with 1000 mg/kg daidzein had greater dry matter intake than those fed with control diets. Compared with the control group, the 1000 mg/kg daidzein group had a higher fat thickness, lower shear force and lightness. The pH, drip loss, cooking loss, redness (a*), yellowness (b*), moisture, ash, crude protein and intramuscular fat of the Longissimus dorsi muscle were unaffected by daidzein supplementation. Compared with the control group, the 1000 mg/kg daidzein group significantly increased the serum concentrations of insulin, free fatty acid and Glutamic-pyruvic transaminase. The 500 mg/kg daidzein group significantly increased the serum concentration of tetraiodothyronine compared with the control group. Supplemental daidzein did not affect the blood antioxidant ability and blood immune parameters in serum. In conclusion, daidzein supplementation above 500 mg/day modifies feed intake and metabolic and hormonal profile, with positive and negative effects on meat quality.
With the aid of the Green's function method and complex function method, the scattering problem of SH-wave by a circular inclusion near the two symmetrically permeable interfacial cracks in the piezoelectric bi-material half -space is considered to obtain the steady state response. Firstly, by means of the image method, the essential function of Green's function is constructed, which satisfies the stress free and electric insulation conditions on the horizontal boundaries in a right-angle space including a circular inclusion and bearing a harmonic out-plane line source force on the vertical boundary. Secondly, the bi-material media is divided into two parts along the vertical boundary. According to continuity condition, the first kind of Fredholm integral equations containing undetermined anti-plane forces are established by “the conjunction method” and “the crack-division technology”, then the integral equations are reduced to the algebraic equations including finite items by effective truncation. Finally, the dynamic stress concentration factor around the edge of circular inclusion and dynamic stress intensity factor at the crack tip are calculated, then the influences of the frequency of incident wave, the length of crack, the position of the crack, the position of circular inclusion, etc. on the dynamic stress concentration factor and dynamic stress intensity factor are discussed.
Grape proanthocyanidins (GPCs) are a family of naturally derived polyphenols that have aroused interest in the poultry industry due to their versatile role in animal health. This study was conducted to investigate the potential benefits and appropriate dosages of GPCs on growth performance, jejunum morphology, plasma antioxidant capacity and the biochemical indices of broiler chicks. A total of 280 newly hatched male Cobb 500 broiler chicks were randomly allocated into four treatments of seven replicates each, and were fed a wheat–soybean meal-type diet with or without (control group), 7.5, 15 or 30 mg/kg of GPCs. Results show that dietary GPCs decrease the feed conversion ratio and average daily gain from day 21 to day 42, increase breast muscle yield by day 42 and improve jejunum morphology between day 21 and day 42. Chicks fed 7.5 and 15 mg/kg of GPCs show increased breast muscle yield and exhibit improved jejunum morphologies than birds in the control group. Dietary GPCs fed at a level of 15 mg/kg markedly increased total superoxide dismutase (T-SOD) activity between day 21 and day 42, whereas a supplement of GPCs at 7.5 mg/kg significantly increased T-SOD activity and decreased lipid peroxidation malondialdehyde content by day 42. A supplement of 30 mg/kg of GPCs has no effect on antioxidant status but adversely affects the blood biochemical indices, as evidenced by increased creatinine content, increased alkaline phosphatase by day 21 and increased alanine aminotransferase by day 42 in plasma. GPC levels caused quadratic effect on growth, jejunum morphology and plasma antioxidant capacity. The predicted optimal GPC levels for best plasma antioxidant capacity at 42 days was 13 to 15 mg/kg, for best feed efficiency during grower phase was 16 mg/kg, for best jejunum morphology at 42 days was 17 mg/kg. In conclusion, GPCs (fed at a level of 13 to 17 mg/kg) have the potential to be a promising feed additive for broiler chicks.
With the aid of the Green's function method and complex function method, the scattering problem of SH-wave by a cylindrical inclusion and a semi-cylindrical hollow in the bi-material half space is considered to obtain the steady state response. Firstly, by the means of the image method, the essential solution of displacement field as well as Green's function is constructed which satisfies the stress free on the horizontal boundary in a right-angle space including a cylindrical inclusion and a semi-cylindrical hollow and bearing a harmonic out-plane line source force at any point on the vertical boundary. Secondly, the bi-material half space is divided into two parts along the vertical interface, and the first kind of Fredholm integral equations containing undetermined anti-plane forces at the linking section is established by “the conjunction method” and “the crack-division method”, the integral equations are reduced to the algebraic equations consisting of finite items by effective truncation. Finally, dynamic stress concentration factor around the edge of cylindrical inclusion and dynamic stress intensity factor at crack tip are calculated, and the influences of effect of interface and different combination of material parameters, etc. on dynamic stress concentration factor and dynamic stress intensity factor are discussed.
A two-dimensional particle-in-cell simulation is carried out to study the focusing effects of the long proton beam propagating in background plasmas. It is found that the smooth beam, with the long length and the small density gradient profile, is focused to high density. The sharp beam, with long length and the large density gradient profile, is modulated into many high density and periodic short beam pulses due to the wakefield induced by the beam. In addition, increasing the plasma density and adopting the non-uniform plasmas are the effective ways to reduce the wakefield.
Human cystic echinococcosis (CE) is known to be endemic in the Tibet Autonomous Region (TAR), China; however, there is relatively little data from hospital records or community prevalence studies, and the situation regarding occurrence of human alveolar echinococcosis (AE) is unclear. Here we review the available reports about human echinococcosis in the seven prefectures of TAR. In addition, two pilot studies by mass screening using ultrasound (with serology) were undertaken (2006/7) in Dangxiong County of Lhasa Prefecture (north central TAR) and Dingqing County of Changdu Prefecture (eastern TAR). In Dangxiong County a prevalence of 9.9% (55/557) for human CE was obtained but no human AE cases were detected. By contrast, in Dingqing County (N= 232 persons screened), 11 CE cases (4.7%) and 12 AE cases (5.2%) (including one mixed CE and AE case) were diagnosed by ultrasound. Hospital records and published reports indicated that CE cases were recorded in all of seven prefectures in Tibet Autonomous Region, and AE cases in four prefectures. Incidence rates of human CE were estimated to range from 1.9 to 155 per 100,000 across the seven prefectures of TAR, with a regional incidence of 45.1 per 100,000. Incidence of AE was estimated to be between 0.6 and 2.8 cases per 100,000. Overall for TAR, human AE prevalence appeared relatively low; however, the pilot mass screening in Dingqing in eastern TAR indicated that human AE disease is a potential public health problem, possibly similar to that already well described in Tibetan communities bordering TAR in north-west Sichuan and south-west Qinghai provinces.
Arginine kinase (AK) is an important regulation factor of energy metabolism in invertebrate. An arginine kinase gene, named HaAK, was identified to be differentially expressed between Cry1Ac-susceptible (96S) and Cry1Ac-resistant (Bt-R) Helicoverpa armigera larvae using cDNA-amplification fragment length polymorphism analysis. The full-length open reading frame sequence of HaAK gene with 1068 bp was isolated from H. armigera. Quantitative reverse transcription polymerase chain reaction assay revealed that HaAK gene is specifically expressed in multiple tissues and at larval developmental stages. The peak expression level of HaAK was detected in the midgut of the fifth-instar larvae. Moreover, the expression of HaAK was obviously down-regulated in Bt-R larvae. We further constructed a dsRNA vector directly targeting HaAK and employed RNAi technology to control the larvae. The feeding bioassays showed that minute quantities of dsRNA could greatly increase the larval mortality and delay the larval pupation. Silencing of HaAK significantly retarded the larval development, indicating that HaAK is a potential target for RNA interference-based pest management.
A high molecular weight protein (HMWP) was isolated and purified from sow milk, and some of its biochemical characteristics and biological functions were identified. The origin of HMWP was also investigated. The molecular weight of HMWP was determined to be about 115 000 and 114 800 by SDS-PAGE and gel filtration, respectively. The sequence of 10 amino acids in N-terminal of HMWP was Ala-Leu-Val-Gln-Ser-Cys-Leu-Asn-Leu-Val. The sequence was blasted against GenBank. No protein showed significant similarity with this sequence suggesting the HMWP may be novel. The result of liquid chromatography mass spectrometry (LC-MS) also proved HMWP could be a novel protein. By amino acid assay, HMWP was rich in glutamate (including glutamine), cysteine, glycine, aspartic acid (including asparagines) and proline. The content of hydrophobic amino acids (Ala, Val, Leu, Ile, Met, Phe and Pro) was lower at 18.59% of the total amino acids suggesting HMWP has high solubility in water. Western blots of lectins were used to identify the kinds of carbohydrate residues attached to HMWP qualitatively. The result showed that HMWP was a kind of glycoprotein containing N-acetylneuraminic acid (NeuNAc), mannose (Man) and/or N-acetylglucosamine (GlcNAc). By isoelectric focusing, HMWP pI was found to be 5.1. Compared with milk fat globule membrane protein (MFGMP) isolated from the sow milk in SDS-PAGE, MFGMP did not contain HMWP. HMWP was assumed to be a secretory milk protein. HMWP was not found in bovine, goat, rabbit or human milk in SDS-PAGE gel suggesting HMWP may be unique to sow milk. By Western blot, HMWP could be detected in sow milk, not in sow serum, which suggests it is synthesized and secreted by the mammary gland. HMWP concentrations in sows milk were the lowest in the first day of lactation, rose significantly during lactation 1 to 7 days. The HMWP content of sows milk remained relatively constant ((1.95±0.13) g/l) during lactation 7 to 20 days. HMWP significantly inhibited Escherichia coli in a dose related manner in vitro. Overall, HMWP could be a novel sow milk protein with implications for the mammary gland and the piglet.
The summer and autumn migrations of the brown planthopper (Nilaparvata lugens) were observed in Southern China with a millimetric scanning entomological radar and a searchlight trap supplemented with capture in field cages, field surveys, and dissections of females. Nilaparvata lugens took off at dusk and dawn in summer, but in autumn there was sometimes only a dusk take-off. The variation of the area density of the radar targets indicated that flight durations were about 9–10 h. In summer, planthopper-size targets generally flew below 1800 m above ground level (AGL), although some insects reached 2000 m AGL; in autumn, they flew lower, generally below 1100 m although some insects reached 1700 m AGL. Multiple layer concentrations were seen every night in both summer and autumn. The depths of these layers in autumn were less than in summer. Nilaparvata lugens flew in strong winds; wind shear may be the main factor causing them to accumulate and form dense layers at certain heights. Nilaparvata lugens emigrating in summer from the vicinity of the radar site in the Northeastern Guangxi Zhuang Autonomous Region, and carried by the prevailing southwesterly wind, would have travelled northeastwards and reached Northern Hunan Province. In autumn, with the prevailing northeasterly wind, emigrants would have reached overwintering areas (south of 21°N).
We describe an experimental study of the forces acting on a square cylinder (of width $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}b$) which occupies 10–40 % of a channel (of width $w$), fixed in a free-surface channel flow. The force experienced by the obstacle depends critically on the Froude number upstream of the obstacle, ${\mathit{Fr}}_1$ (depth $h_1$), which sets the downstream Froude number, ${\mathit{Fr}}_2$ (depth $h_2$). When ${\mathit{Fr}}_1<{\mathit{Fr}}_{1c}$, where ${\mathit{Fr}}_{1c}$ is a critical Froude number, the flow is subcritical upstream and downstream of the obstacle. The drag effect tends to decrease or increase the water depth downstream or upstream of the obstacle, respectively. The force is form drag caused by an attached wake and scales as $\overline{F_{D}}\simeq C_D \rho b u_1^2 h_1/2$, where $C_D$ is a drag coefficient and $u_1$ is the upstream flow speed. The empirically determined drag coefficient is strongly influenced by blocking, and its variation follows the trend $C_D=C_{D0}(1+C_{D0}b/2w)^2$, where $C_{D0}=1.9$ corresponds to the drag coefficient of a square cylinder in an unblocked turbulent flow. The r.m.s. lift force is approximately 10–40 % of the mean drag force and is generated by vortex shedding from the obstacle. When ${\mathit{Fr}}_1={\mathit{Fr}}_{1c}\, (<1)$, the flow is choked and adjusts by generating a hydraulic jump downstream of the obstacle. The drag force scales as $\overline{F}_D\simeq C_K \rho b g (h_1^2-h_2^2)/2$, where experimentally we find $C_K\simeq 1$. The r.m.s. lift force is significantly smaller than the mean drag force. A consistent model is developed to explain the transitional behaviour by using a semi-empirical form of the drag force that combines form and hydrostatic components. The mean drag force scales as $\overline{F_{D}}\simeq \lambda \rho b g^{1/3} u_1^{4/3} h_1^{4/3}$, where $\lambda $ is a function of $b/w$ and ${\mathit{Fr}}_1$. For a choked flow, $\lambda =\lambda _c$ is a function of blocking ($b/w$). For small blocking fractions, $\lambda _c= C_{D0}/2$. In the choked flow regime, the largest contribution to the total drag force comes from the form-drag component.
Convergent studies have highlighted the dysfunction of the amygdala, prefrontal cortex and hippocampus in post-traumatic stress disorder (PTSD). However, only a few studies have investigated the functional connectivity between brain regions in PTSD patients during the resting state, which may improve our understanding of the neuropathophysiology of PTSD. The aim of this study was to investigate patterns of whole-brain functional connectivity in treatment-naive PTSD patients without co-morbid conditions who experienced the 8.0-magnitude earthquake in the Sichuan province of China.
Method
A total of 72 PTSD patients and 86 trauma-exposed non-PTSD controls participated in the resting-state functional magnetic resonance imaging study. All these subjects were recruited from the disaster zone of the 2008 Sichuan earthquake. Functional connectivities between 90 paired brain regions in PTSD patients were compared with those in trauma-exposed non-PTSD controls. Furthermore, Pearson correlation analysis was performed between significantly abnormal connectivities in PTSD patients and their clinician-administered PTSD scale (CAPS) scores.
Results
Compared with non-PTSD controls, PTSD patients showed weaker positive connectivities between the middle prefrontal cortex (mPFC) and the amygdala, hippocampus, parahippocampal gyrus and rectus, as well as between the inferior orbitofrontal cortex and the hippocampus. In addition, PTSD patients showed stronger negative connectivity between the posterior cingulate cortex (PCC) and the insula. The CAPS scores in PTSD patients correlated negatively with the connectivity between the amygdala and the mPFC.
Conclusions
PTSD patients showed abnormalities in whole-brain functional connectivity, primarily affecting the connectivities between the mPFC and limbic system, and connectivity between the PCC and insula.