We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Turbulent flow widely exists in the aerospace field, and it is still challenging to realise the accurate prediction in the numerical simulation. To realise the high-fidelity numerical simulation of compressible turbulent flow, a high-order accurate self-adaptive turbulence eddy simulation (SATES) method is developed on the PHengLEI-HyOrder open-source solver, combining with the high-order accurate weighted compact nonlinear schemes (WCNS). The compressible flow in the subsonic and transonic is numerically simulated, including some typical cases, such as subsonic flow past a circular cylinder and flow past a square cylinder, high-lift configuration DLR-F11, transonic flow around a circular cylinder. The results predicted by the current high-order accurate SATES are in good agreement with the available experimental and numerical data. The present numerical method can also accurately capture the interactions between shock waves and turbulence while accurately simulating flow separation, shear layer instability and large-scale vortex shedding. The results obtained show that the current high-order accurate SATES simulations based on PHengLEI-HyOrder solver can accurately simulate complex turbulent flows with high reliability.
Adolescents with depression have distinct affective reactions to daily events, but current research is controversial. The emotional context insensitivity theory suggests blunted reactivity in depression, whereas the hypotheses of negative potentiation and mood brightening effect suggest otherwise. While nonlinear associations between depression severity and affective reactivity have been observed, studies with a separate subclinical group remain rare. Subthreshold depression (SD), defined by two to four symptoms lasting for two weeks or more, provides a dimensional view to the underpinnings of affective reactivity. In this study, we compared positive affect (PA) and negative affect (NA) reactivity to positive and negative daily events (uplifts and stress) among adolescents with Major Depressive Disorder (MDD), SD and healthy controls (HC) using experience sampling methods (ESM).
Objectives
We hypothesized a stepped difference in affective reactivity along the depression spectrum: the MDD group will have the strongest reactivity of PA and NA to uplifts and stress, followed by SD and HC.
Methods
Three groups (MDD, SD, and HC) of adolescents were recruited from an epidemiologic sample entitled ‘Hong Kong Child and Adolescent Psychiatric Epidemiologic Survey: Age 6 to 17’. Group status was determined by the Diagnostic Interview Schedule for Children Version 5. They completed an experience sampling diary on smartphone for 14 consecutive days, with 5-10 entries per day. Momentary levels of PA (happy, relaxed, contented), NA (irritated, low, nervous), uplifts and stress experienced before the entry were measured on a 1-7 Likert scale.
Results
The sample consisted of 19 adolescents with MDD, 30 with SD, and 59 HC. The M:F ratio was 17:19. The age range was 12-18 with a mean of 14.8. The overall ESM completion rate was 46%. The MDD group had the highest levels of stress and NA, and the lowest levels of uplifts and PA, followed by the SD and HC groups respectively (p<0.01). Across groups, levels of PA were positively associated with uplifts and negatively associated with stress, whereas levels of NA were positively associated with stress and negatively associated with uplifts. The Group x Uplift interaction effect on PA was significant, with greater PA reactivity in SD (p<0.01) and MDD (p=0.07) when compared with HC. The Group x Uplift interaction effect on NA was significant, with greater NA reactivity in SD than HC (p<0.01). The Group x Stress interaction effect on PA was significant, with greater PA reactivity in SD than HC (p<0.01) and MDD (p<0.01). The Group x Stress interaction effect with NA is non-significant.
Conclusions
Contrary to our hypothesis, adolescents with SD experienced strongest PA and NA reactivity in uplifts and PA reactivity in stress. It provides evidence towards a nonlinear relationship between severity of depression and affective reactivity.
Transient numerical simulations were conducted to investigate the influence of large amplitude and fast impact backpressure on a shock train. The fundamental problem consists of a shock train within a constant-area channel with a Ma=1.61 inflow and a pulse backpressure applied to the outlet. The pressure disturbance in the isolator has an intense forcing-response lag. From the moment of the backpressure peak appearance, it takes 36 times the backpressure duration for the pressure disturbance to reach the upstream end. It moves upstream with time in the form of a normal shock wave. As time progresses, the normal shock degenerates into a $\lambda $ shock and a compression wave behind due to the action of viscous dissipation in the boundary layer. Eventually, a multi-stage shock train is formed. The maximum backpropagation distance is a quadratic function of both the pulse backpressure peak and duration, and the relationship between these variables was determined by fitting. When the integral value of backpressure to time is fixed, reducing the backpressure peak while increasing the duration will reduce the backpressure pulsation at the isolator outlet, which will be more conducive to shortening the maximum backpropagation distance than reducing the duration and increasing the backpressure peak. The values of backpressure peak and duration are obtained from the detonation combustion case, which ensures the authenticity of backpressure characteristics. The relevant research conclusions can provide a reference for the design of the isolator of pulse detonation ramjet.
To enhance the performance of anti-ship missiles cooperative attack, this paper proposes a finite-time trajectory shaping-based cooperative guidance law (TSCGL). Firstly, the cooperative guidance model is established on segmented linearisation of the missile’s heading angle. Then, a trajectory shaping guidance law for a single missile is derived by a weighted optimal energy cost function and Schwarz inequality. On this basis, a finite-time TSCGL is proposed combined with trajectory shaping technology and finite-time theory. The desirable finite-time convergence performance can ensure a simultaneous attack. Through an improved method of time-to-go estimation, it is independent of small-angle assumption and relaxes the launching conditions of the missiles. Additionally, the proposed finite-time TSCGL can achieve better damage performance through energy management. Finally, simulation results demonstrate the effectiveness and superiority of the proposed finite-time TSCGL.
In view of the cooperative guidance problem with time delay, this paper proposes a two-stage time-delay prescribed-time cooperative guidance law in the three-dimensional (3D) space. In the first stage, by introducing a time scaling function and time-delay consensus, the proposed cooperative guidance law can overcome the negative influence of time delay to guaranteed the desired convergence performance. Derived from the Lyapunov convergence analysis, the time-delay stability of the first stage can be ensured and the convergence time can be described as the relationship between delayed time and mission-assigned convergence time. Then, taking the prescribed-time-related convergence time as the switching point, the second stage begins with suitable initial conditions and all interceptors are governed by proportional navigation guidance. Finally, comparative simulations are performed to demonstrate the effectiveness and superiority of the proposed time-delay guidance law.
In this paper, to address the cooperative localisation of a heterogeneous UAV swarm in the GNSS-denied environment, an adaptive simulated annealing-particle swarm optimisation (SA-PSO) cooperative localisation algorithm is proposed. Firstly, the forming principle of the communication and measurement framework is investigated in light of a heterogeneous UAV swarm composition. Secondly, a reasonably cooperative localisation function is established based on the proposed forming principle, which can minimise the relative localisation error with limited available information. Then, an adaptive weight principle is incorporated into the particle swarm optimisation (PSO) for better performance. Furthermore, in order to overcome the drawbacks of PSO algorithm easily falling into the local extreme point, an adaptive SA-PSO algorithm is improved to promote the convergence speed of cooperative localisation. Finally, comparative simulations are performed among the adaptive SA-PSO, adaptive PSO, and PSO algorithms to demonstrate the feasibility and superiority of the proposed adaptive SA-PSO algorithm. Simulation results show that the proposed algorithm has better performance in convergence speed, and the cooperative localisation precision can be guaranteed.
This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.
To investigate the difference of visual pattern memory among first-episode treatment-naive patients with deficit and nondeficit schizophrenia.
Methods:
199 first-episode treatment-naive patients with schizophrenia, and 148 controls were recruited. Schedule for the Deficit Syndrome (SDS) was used to categorize the patients into deficit or nondeficit subtype. Pattern Recognition Memory (PRM) was used to test the immediate and delayed mode of visual pattern memory. Positive and Negative Symptom Scale PANSS was used to assess the degree of patients symptoms.
Results:
The PRM immediate mode and delayed mode percent correct was significant lower and time latency was significant longer in two subtypes of patients. There were no significant difference in the performance of immediate mode of PRM between deficit and nondeficit patients[(86.49 ± 15.34) vs. (87.28 ± 16.00), P=0.960]. But the impairment was more severe in patients with deficit schizophrenia [percent correct (63.10 ± 19.17) vs. (70.69 ± 15.34), P< 0.001 time latency 5086.80 ± 7528.54 vs. 3527.40 ± 3649.08 P=0.024] in the delayed mode. and PRM has no significant correlation with the negative symptoms of deficit schizophrenia.
Conclusion:
There were significant difference in the performance of immediate and delayed mode of PRM between patients and controls. The difference between first-episode treatment-naïve deficit schizophrenia and nondeficit schizophrenia was only in delayed mode of PRM, and has no correlation with the primary negative symptoms. The deficit schizophrenia is a subtype of schizophrenia with unique impairment of cognitive functions.
Recently, a triple-network model suggested the abnormal interactions between the executive-control network (ECN), default-mode network (DMN) and salience network (SN) are important characteristics of addiction, in which the SN plays a critical role in allocating attentional resources toward the ECN and DMN. Although increasing studies have reported dysfunctions in these brain networks in Internet gaming disorder (IGD), interactions between these networks, particularly in the context of the triple-network model, have not been investigated in IGD. Thus, we aimed to assess alterations in the inter-network interactions of these large-scale networks in IGD, and to associate the alterations with IGD-related behaviors.
Methods:
DMN, ECN and SN were identified using group-level independent component analysis (gICA) in 39 individuals with IGD and 34 age and gender matched healthy controls (HCs). Then alterations in the SN-ECN and SN-DMN connectivity, as well as in the modulation of ECN versus DMN by SN, using a resource allocation index (RAI) developed and validated previously in nicotine addiction, were assessed. Further, associations between these altered network coupling and clinical assessments were also examined.
Results:
Compared with HCs, IGD had significantly increased SN-DMN connectivity and decreased RAI in right hemisphere (rRAI), and the rRAI in IGD was negatively associated with their scores of craving.
Conclusions:
These findings suggest that the deficient modulation of ECN versus DMN by SN might provide a mechanistic framework to better understand the neural basis of IGD and might provide novel evidence for the triple-network model in IGD.
Patients with severe mental disorders in low-resource settings have limited access to services, resulting in overwhelming caregiving burden for families. In extreme cases, this has led to the long-term restraining of patients in their homes. China underwent a nationwide initiative to unlock patients and provide continued treatment. This study aims to quantify household economic burden in families after unlocking and treatment, and to identify factors associated with increased burden due to schizophrenia.
Methods
A total of 264 subjects were enrolled from three geographically diverse provinces in 2012. Subjects were patients with schizophrenia who were previously put under restraints and had participated in the ‘unlocking and treatment’ intervention. The primary outcome was the current household economic burden, obtained from past year financial information collected through on-site interview. Patient disease characteristics, treatment, outcomes and family caregiving burden were collected as well. Univariate and multivariate linear regression were used to construct risk factor models for indirect economic burden.
Results
After participating in the intervention, 85% of patients continued to receive mental health services, 70% used medication as prescribed and 80% were never relocked. Family members reported significantly decreased caregiving burden after receiving the intervention. Mean direct and indirect household economic burdens were CNY963 (US$31.7) and CNY11 724 (US$1670) per year, respectively, while family total income was on average CNY12 108 (US$1913) per year. Greater disease severity and poorer patient psychosocial function at time of study were found to be independent factors related to increased indirect burden.
Conclusions
The ‘unlocking and treatment’ intervention has improved the lives of patients and families. Indirect burden due to disease is still a major economic issue that needs to be addressed, potentially through improving treatment and patient functioning. Our findings contribute to the unravelling and eventual elimination of chronic restraining of mentally ill patients in low-resource settings.
Estimating the feed intake of grazing herbivores is critical for determining their nutrition, overall productivity and utilization of grassland resources. A 17-day indoor feeding experiment was conducted to evaluate the potential use of Medicago sativa as a natural supplement for estimating the total feed intake of sheep. A total of 16 sheep were randomly assigned to four diets (four sheep per diet) containing a known amount of M. sativa together with up to seven forages common to typical steppes. The diets were: diet 1, M. sativa + Leymus chinensis + Puccinellia distans; diet 2, species in diet 1 + Phragmites australis; diet 3, species in diet 2 + Chenopodium album + Elymus sibiricus; and diet 4, species in diet 3 + Artemisia scoparia + Artemisia tanacetifolia. After faecal marker concentrations were corrected by individual sheep recovery, treatment mean recovery or overall recovery, the proportions of M. sativa and other dietary forages were estimated from a combination of alkanes and long-chain alcohols using a least-square procedure. Total intake was the ratio of the known intake of M. sativa to its estimated dietary proportion. Each dietary component intake was obtained using total intake and the corresponding dietary proportions. The estimated values were compared with actual values to assess the estimation accuracy. The results showed that M. sativa exhibited a distinguishable marker pattern in comparison to the other dietary forage species. The accuracy of the dietary composition estimates was significantly (P < 0.001) affected by both diet diversity and the faecal recovery method. The proportion of M. sativa and total intake across all diets could be accurately estimated using the individual sheep or the treatment mean recovery methods. The largest differences between the estimated and observed total intake were 2.6 g and 19.2 g, respectively, representing only 0.4% and 2.6% of the total intake. However, they were significantly (P < 0.05) biased for most diets when using the overall recovery method. Due to the difficulty in obtaining individual sheep recovery under field conditions, treatment mean recovery is recommended. This study suggests that M. sativa, a natural roughage instead of a labelled concentrate, can be utilized as a dietary supplement to accurately estimate the total feed intake of sheep indoors and further indicates that it has potential to be used in steppe grassland of northern China, where the marker patterns of M. sativa differ markedly from commonly occurring plant species.
Imprinted genes uniquely drive and support fetoplacental growth by controlling the allocation of maternal resources to the fetus and affecting the newborn’s growth. We previously showed that alterations of the placental imprinted gene expression are associated with suboptimal perinatal growth and respond to environmental stimuli including socio-economic determinants. At the same time, maternal psychosocial stress during pregnancy (MPSP) has been shown to affect fetal growth. Here, we set out to test the hypothesis that placental imprinted gene expression mediates the effects of MPSP on fetal growth in a well-characterized birth cohort, the Stress in Pregnancy (SIP) Study. We observed that mothers experiencing high MPSP deliver infants with lower birthweight (P=0.047). Among the 109 imprinted genes tested, we detected panels of placental imprinted gene expression of 23 imprinted genes associated with MPSP and 26 with birthweight. Among these genes, five imprinted genes (CPXM2, glucosidase alpha acid (GAA), GPR1, SH3 and multiple ankyrin repeat domains 2 (SHANK2) and THSD7A) were common to the two panels. In multivariate analyses, controlling for maternal age and education and gestational age at birth and infant gender, two genes, GAA and SHANK2, each showed a 22% mediation of MPSP on fetal growth. These data provide new insights into the role that imprinted genes play in translating the maternal stress message into a fetoplacental growth pattern.
Inadequate knowledge in maternal nutrition is one of the determinants of low birth weight. However, little evidence is available on whether maternal nutrition counselling alone can influence birth weight among women from low socioeconomic households. This study assessed the effect of prenatal maternal nutritional counselling on birth weight and examined the related risk factors. A cluster randomized controlled trial was conducted to assess the effectiveness of home-based maternal nutritional counselling on nutritional outcomes, morbidity, breastfeeding, and infant feeding practices by the African Population and Health Research Center in two urban informal settlements of Nairobi. The intervention group received monthly antenatal and nutritional counselling from trained community health volunteers; meanwhile, the control group received routine antenatal care. A total of 1001 participants were included for analysis. Logistic regression was applied to determine associations between low birth weight and maternal characteristics. A higher prevalence of low birth weight was observed in the control group (6.7%) than in the intervention group (2.5%; P<0.001). Logistic regression identified significant associations between birth weight and intervention group (adjusted odds ratio (AOR)=0.26; 95% confidence interval (CI), 0.10–0.64); maternal height <154.5 cm (AOR=3.33; 95% CI, 1.01–10.96); last antenatal care visits at 1st or 2nd trimesters (AOR=9.48; 95% CI, 3.72–24.15); pre-term delivery (AOR=3.93; 95% CI, 1.93–7.98); maternal mid-upper arm circumference <23 cm (AOR=2.57; 95% CI, 1.15–5.78); and cesarean delivery (AOR=2.27; 95% CI, 1.04–4.94). Nutrition counselling during pregnancy reduced low birth weight and preterm births, which was determined by women of short stature, early stoppage of antenatal visit, and cesarean delivery.
Extensive insecticide use has led to the resistance of mosquitoes to these insecticides, posing a major barrier to mosquito control. Previous Solexa high-throughput sequencing of Culex pipiens pallens in the laboratory has revealed that the abundance of a novel microRNA (miRNA), miR-13664, was higher in a deltamethrin-sensitive (DS) strain than a deltamethrin-resistant (DR) strain. Real-time quantitative PCR revealed that the miR-13664 transcript level was lower in the DR strain than in the DS strain. MiR-13664 oversupply in the DR strain increased the susceptibility of these mosquitoes to deltamethrin, whereas inhibition of miR-13664 made the DS strain more resistant to deltamethrin. Results of bioinformatic analysis, quantitative reverse-transcriptase polymerase chain reaction, luciferase assay and miR mimic/inhibitor microinjection revealed CpCYP314A1 to be a target of miR-13664. In addition, downregulation of CpCYP314A1 expression in the DR strain reduced the resistance of mosquitoes to deltamethrin. Taken together, our results indicate that miR-13664 could regulate deltamethrin resistance by interacting with CpCYP314A1, providing new insights into mosquito resistance mechanisms.
Multiple human immunodeficiency virus (HIV)-1 genotypes in China were first discovered in Yunnan Province before disseminating throughout the country. As the HIV-1 epidemic continues to expand in Yunnan, genetic characteristics and transmitted drug resistance (TDR) should be further investigated among the recently infected population. Among 2828 HIV-positive samples newly reported in the first quarter of 2014, 347 were identified as recent infections with BED-captured enzyme immunoassay (CEIA). Of them, 291 were successfully genotyped and identified as circulating recombinant form (CRF)08_BC (47.4%), unique recombinant forms (URFs) (18.2%), CRF01_AE (15.8%), CRF07_BC (14.4%), subtype C (2.7%), CRF55_01B (0.7%), subtype B (0.3%) and CRF64_BC (0.3%). CRF08_BC and CRF01_AE were the predominant genotypes among heterosexual and homosexual infections, respectively. CRF08_BC, URFs, CRF01_AE and CRF07_BC expanded with higher prevalence in central and eastern Yunnan. The recent common ancestor of CRF01_AE, CRF07_BC and CRF08_BC dated back to 1983.1, 1992.1 and 1989.5, respectively. The effective population sizes (EPS) for CRF01_AE and CRF07_BC increased exponentially during 1991–1999 and 1994–1999, respectively. The EPS for CRF08_BC underwent two exponential growth phases in 1994–1998 and 2001–2002. Lastly, TDR-associated mutations were identified in 1.8% of individuals. These findings not only enhance our understanding of HIV-1 evolution in Yunnan but also have implications for vaccine design and patient management strategies.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
A new method, called Cloud of Points (COP) Reconstruction, is proposed in the present work to extend the meshfree method to simulate viscous flows. With the characters of viscous flows, the anisotropic COP structure is distributed in boundary layer. The proposed method can improve the anisotropic COP structure to isotropic COP structure and reduce the condition number of the least square coefficient matrix for conventional meshfree method. The values of the new reconstructed points are calculated by the Lagrange interpolation. The accuracy and the robustness of the presented meshfree solver are demonstrated on a number of standard test cases, including the functions with analytical gradients and the viscous flows past NACA0012 airfoil. The comparison of the simulation results with the experimental data and other numerical simulation data are also investigated.
The effects of high-Z dopant on the laser-driven ablative Richtmyer–Meshkov instability (RMI) are investigated by theoretical analysis and radiation hydrodynamics simulations. It is found that the oscillation amplitude of ablative RMI depends on the ablation velocity, the blow-off plasma velocity and the post-shock sound speed. Owing to enhancing the radiation at the plasma corona and increasing the radiation temperature at the ablation front, the high-Z dopant in plastic target can significantly increase the ablation velocity and the blow-off plasma velocity, leading to an increase in oscillation frequency and a reduction in oscillation amplitude of the ablative RMI. The high-Z dopant in plastic target is beneficial to reduce the seed of ablative Rayleigh–Taylor instability. These results are helpful for the design of direct drive inertial confinement fusion capsules.