We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Rare earth elements (REEs) preserved in speleothems have garnered increasing attention as ideal proxies for the paleoenvironmental reconstruction. However, due to their typically low contents in stalagmites, the availability of stalagmite-based REE records remains limited. Here we present high-resolution REEs alongside oxygen isotope (δ18O) records in stalagmite SX15a from Sanxing Cave, southwestern China (110.1–103.3 ka). This study demonstrates that REE records could provide useful information for the provenance and formation process of the stalagmite, due to consistent distribution pattern across different periods indicating stable provenance. More interestingly, the total REE (ΣREE) record could serve as an effective indicator to reflect local hydrological processes associated with monsoonal precipitation. During Marine Isotopic Stage (MIS) 5d, a relatively low ΣREE content is consistent with the positive SX15a δ18O and negative NGRIP δ18O, reflecting a dry-cold environment; while during MIS 5c, a generally high ΣREE content suggests a humid-warm circumstance. Furthermore, the ΣREE record captured four prominent sub-millennial fluctuations within the Greenland interstadial 24 event, implying a combined influence by the regional climate and local soil redox conditions. Our findings indicate that the stalagmite-based REE records would be a useful proxy for better understanding of past climate and environment changes.
We undertake a comprehensive investigation into the distribution of in situ stars within Milky Way-like galaxies, leveraging TNG50 simulations and comparing their predictions with data from the H3 survey. Our analysis reveals that 28% of galaxies demonstrate reasonable agreement with H3, while only 12% exhibit excellent alignment in their profiles, regardless of the specific spatial cut employed to define in situ stars. To uncover the underlying factors contributing to deviations between TNG50 and H3 distributions, we scrutinise correlation coefficients among internal drivers (e.g. virial radius, star formation rate [SFR]) and merger-related parameters (such as the effective mass-ratio, mean distance, average redshift, total number of mergers, average spin-ratio, and maximum spin alignment between merging galaxies). Notably, we identify significant correlations between deviations from observational data and key parameters such as the median slope of virial radius, mean SFR values, and the rate of SFR change across different redshift scans. Furthermore, positive correlations emerge between deviations from observational data and parameters related to galaxy mergers. We validate these correlations using the Random Forest Regression method. Our findings underscore the invaluable insights provided by the H3 survey in unravelling the cosmic history of galaxies akin to the Milky Way, thereby advancing our understanding of galactic evolution and shedding light on the formation and evolution of Milky Way-like galaxies in cosmological simulations.
Item calibration is an essential issue in modern item response theory based psychological or educational testing. Due to the popularity of computerized adaptive testing, methods to efficiently calibrate new items have become more important than that in the time when paper and pencil test administration is the norm. There are many calibration processes being proposed and discussed from both theoretical and practical perspectives. Among them, the online calibration may be one of the most cost effective processes. In this paper, under a variable length computerized adaptive testing scenario, we integrate the methods of adaptive design, sequential estimation, and measurement error models to solve online item calibration problems. The proposed sequential estimate of item parameters is shown to be strongly consistent and asymptotically normally distributed with a prechosen accuracy. Numerical results show that the proposed method is very promising in terms of both estimation accuracy and efficiency. The results of using calibrated items to estimate the latent trait levels are also reported.
Computerized adaptive testing (CAT) is characterized by its high estimation efficiency and accuracy, in contrast to the traditional paper-and-pencil format. CAT specifically for cognitive diagnosis (CD-CAT) carries the same advantages and has been seen as a tool for advancing the use of cognitive diagnosis (CD) assessment for educational practice. A powerful item selection method is the key to the success of a CD-CAT program, and to date, various parametric item selection methods have been proposed and well-researched. However, these parametric methods all require large samples, to secure high-precision calibration of the items in the item bank. Thus, at present, implementation of parametric methods in small-scale educational settings, such as classroom, remains challenging. In response to this issue, Chang, Chiu, and Tsai (Appl Psychol Meas 43:543–561, 2019) proposed the nonparametric item selection (NPS) method that does not require parameter calibration and outperforms the parametric methods for settings with only small or no calibration samples. Nevertheless, the NPS method is not without limitations; extra assumptions are required to guarantee a consistent estimator of the attribute profiles when data conform to complex models. To remedy this shortcoming, the general nonparametric item selection (GNPS) method that incorporates the newly developed general NPC (GNPC) method (Chiu et al. in Psychometrika 83:355–375, 2018) as the classification vehicle is proposed in this study. The inclusion of the GNPC method in the GNPS method relaxes the assumptions imposed on the NPS method. As a result, the GNPS method can be used with any model or multiple models without abandoning the advantage of being a small-sample technique. The legitimacy of using the GNPS method in the CD-CAT system is supported by Theorem 1 proposed in the study. The efficiency and effectiveness of the GNPS method are confirmed by the simulation study that shows the outperformance of the GNPS method over the compared parametric methods when the calibration samples are small.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
This study examined the sour grapes/sweet lemons rationalization through 2 conditions: ‘attainable’ (sweet lemons) and ‘unattainable’ (sour grapes), reflecting China’s 2019-nCoV vaccination strategy. The aim was to find ways to change people’s beliefs and preferences regarding vaccines by easing their safety concerns and encouraging more willingness to get vaccinated. An online survey was conducted from January 22 to 27, 2021, with 3,123 residents across 30 provinces and municipalities in the Chinese mainland. The direction of belief and preference changed in line with the sour grapes/sweet lemons rationalization. Using hypothetical and real contrasts, we compared those for whom the vaccine was relatively unattainable (‘sour grapes’ condition) with those who could get the vaccine easily (‘sweet lemons’). Whether the vaccine was attainable was determined in the early stage of the vaccine roll-out by membership in a select group of workers that was supposed to be vaccinated to the greatest extent possible, or, by being in the second stage when the vaccine was available to all. The attainable conditions demonstrated higher evaluation in vaccine safety, higher willingness to be vaccinated, and lower willingness to wait and see. Hence, we propose that the manipulation of vaccine attainability, which formed the basis of the application of sour grapes/sweet lemons rationalization, can be utilized as a means to manipulate the choice architecture to nudge individuals to ease vaccine safety concerns, reducing wait-and-see tendencies, and enhancing vaccination willingness. This approach can expedite universal vaccination and its associated benefits in future scenarios resembling the 2019-nCoV vaccine rollout.
In this paper, a capsule endoscopy system with a sensing function is proposed for medical devices. A single-arm spiral antenna is designed for data transmission and is combined with the voltage controlled oscillator to achieve sensing capabilities. The designed antenna operates at a 900 MHz industrial scientific medical band. By establishing a three-layer cylindrical model of the stomach, it was concluded that the antenna in the stomach has a high peak gain of −1.1 dBi. Additionally, the antenna achieved a −10 dB impedance bandwidth of 5%. The capsule endoscopy was experimentally measured in both actual stomach and simulated environments. The maximum working distance of the capsule endoscope was measured to be 6.8 m. Additionally, the proposed capsule endoscope was tested for its sensing function using solutions with different dielectric constants. Finally, it was confirmed through link analysis that it has good communication capabilities. The results and analysis confirm that the proposed capsule endoscope can be used for examining gastric diseases.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
We report a numerical investigation of a previously noticed but less explored flow state transition in two-dimensional turbulent Rayleigh–Bénard convection. The simulations are performed in a square domain over a Rayleigh number range of $10^7 \leq Ra \leq 2 \times 10^{11}$ and a Prandtl number range of $0.25 \leq Pr \leq 20$. The transition is characterized by the emergence of multiple satellite eddies with increasing $Ra$, which orbit around and interact with the main vortex roll in the system. Consequently, the main roll is squeezed to a smaller size compared with the domain and wanders around in the bulk region irregularly and extensively. This is in sharp contrast to the flow state before the transition, which is featured by a domain-sized circulatory roll with its vortex centre ‘condensed’ near the domain's centre. Detailed velocity field analysis reveals that there exists an abrupt increase in the energy fluctuations of the Fourier modes during the transition. Based on this phase-transition-like signal, the critical condition for the transition is found to follow a scaling relation as $Ra_t \sim Pr^{1.41}$ where $Ra_t$ is the critical Rayleigh number for the transition. This scaling relation is quantitatively explained by a phenomenological model grounded on the bistability behaviour (i.e. spontaneous and stochastic switching between the two flow states) observed at the edge of the transition. The model can also account for the effects of aspect ratio on the transition reported in the literature (van der Poel et al., Phys. Fluids, vol. 24, 2012).
The right inferior frontal gyrus (RIFG) is a potential beneficial brain stimulation target for autism. This randomized, double-blind, two-arm, parallel-group, sham-controlled clinical trial assessed the efficacy of intermittent theta burst stimulation (iTBS) over the RIFG in reducing autistic symptoms (NCT04987749).
Methods
Conducted at a single medical center, the trial enrolled 60 intellectually able autistic individuals (aged 8–30 years; 30 active iTBS). The intervention comprised 16 sessions (two stimulations per week for eight weeks) of neuro-navigated iTBS or sham over the RIFG. Fifty-seven participants (28 active) completed the intervention and assessments at Week 8 (the primary endpoint) and follow-up at Week 12.
Results
Autistic symptoms (primary outcome) based on the Social Responsiveness Scale decreased in both groups (significant time effect), but there was no significant difference between groups (null time-by-treatment interaction). Likewise, there was no significant between-group difference in changes in repetitive behaviors and exploratory outcomes of adaptive function and emotion dysregulation. Changes in social cognition (secondary outcome) differed between groups in feeling scores on the Frith-Happe Animations (Week 8, p = 0.026; Week 12, p = 0.025). Post-hoc analysis showed that the active group improved better on this social cognition than the sham group. Dropout rates did not vary between groups; the most common adverse event in both groups was local pain. Notably, our findings would not survive stringent multiple comparison corrections.
Conclusions
Our findings suggest that iTBS over the RIFG is not different from sham in reducing autistic symptoms and emotion dysregulation. Nonetheless, RIFG iTBS may improve social cognition of mentalizing others' feelings in autistic individuals.
Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope.
Methods:
A retrospective analysis was performed on the clinical data of 2513 children aged 3–18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope.
Results:
(1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001).
Conclusion:
The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.
In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modelling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured transformer-based network for deblending astronomical images, which we term the CAT-deblender. It was trained using both RGB and the grz-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (DECaLS) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighbouring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for r-band consistently lie within $\pm$0.025 to $\pm$0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the DECaLS database, we successfully deblended 433 overlapping galaxies. Moreover, we have demonstrated effective deblending of 63 733 blended galaxy images, randomly chosen from the DECaLS database.
An enhanced wideband tracking method for characteristic modes (CMs) is investigated in this paper. The method consists of three stages, and its core tracking stage (CTS) is based on a classical eigenvector correlation-based algorithm. To decrease the tracking time and eliminate the crossing avoidance (CRA), we append a commonly used eigenvalue filter (EF) as the preprocessing stage and a novel postprocessing stage to the CTS. The proposed postprocessing stage can identify all CRA mode pairs by analyzing their trajectory and correlation characteristics. Subsequently, it can predict corresponding CRA frequencies and correct problematic qualities rapidly. Considering potential variations in eigenvector numbers at consecutive frequency samples caused by the EF, a new execution condition for the adaptive frequency adjustment in the CTS is introduced. Finally, CMs of a conductor plate and a fractal structure are investigated to demonstrate the performance of the proposed method, and the obtained results are discussed.
The traffic issues have been attracting global attention due to increased occurrence and higher mortality rate in the older population. Many countries have employed different kinds of regulations on the elder drivers depending either on their age or whether being demented. These policy differences left a research gap to identify the temporal relationship between serious traffic accidents (STA) and dementias, which can inform the most appropriate time for policymaking. In the present study, we linked two national databases and performed analyses to explore this problem.
Methods:
With the grant and supports from the government, the research team combined the databases of STA registries and the whole population dataset of National Health Insurance Research Database to form a 10-year retrospective cohort for analyses. We performed both retrospective and prospective directions to explore the time length between STAs and the diagnoses of dementia depending on the selection of the STA occurrences and dementia diagnoses as outcomes. In addition to descriptive statistical analyses, we also performed inferential statistics to analyse the variables between different types of STAs. A p-value less than 0.05 was set as statistically significant.
Results:
437516 persons involved in STAs were enrolled for analyses and the mean age was 61.47 years (SD=8.90) with sex ratio (F/M) of 0.62. We divided the samples into three groups: (1) STAs without dementias (95.17%) (2) dementias after STAs (3.40%), and (3) dementias before STAs (1.43%). The mean age of the 3rd group (73.80 years, SD=8.79) was significantly older than the rest two. When comparing these three groups, a preceded dementia diagnosis was a significant risk factor for repeated STAs. (OR: 1.205, 95% CI: 1.100-1.320, p<0.001) Finally, an average length of 2.35 years (SD: 1.60) was found for those who was diagnosed of dementias before the first STA while 2.57 years (SD: 1.69) was noted for the diagnosis of dementia after first STA.
Conclusion:
In our study, dementia was identified as a significant risk factor for STAs. We further asserted that 2.5 years would be an appropriate time length for the authorities to examine the traffic risks of those who were diagnosed of dementias.
Salt solutions have complex effects on the swelling characteristics of compacted bentonite; these effects are caused by the inhibitory action of salinity and the ion-exchange reaction between the solution and bentonite. In order to characterize the swelling properties of compacted bentonite in a salt solution, swelling deformation tests were carried out for Gao-Miao-Zi (GMZ) bentonite specimens in NaCl and CaCl2 solutions. Swelling characteristics decreased with increasing salt concentration. Swelling strains in NaCl solution were larger than those in CaCl2 solution, even though the ionic concentration of 1.0 mol/L (M) NaCl solution is larger than that of 0.5 M CaCl2. According to the exchangeable cations tests, cation exchange was different for specimens immersed in different salt solutions. The swelling fractal model was used to predict the swelling strains of compacted bentonite in a concentrated salt solution. In this model, the effective stress incorporating osmotic suction was applied to take the effect of salinity into consideration, and the swelling coefficient, K, was employed to describe the swelling properties affected by the variation in exchangeable cations. In the model, fractal dimension was measured by nitrogen adsorption, and the salt solution had little effect on fractal dimension. K was estimated by the diffuse double layer (DDL) model for osmotic swelling in distilled water. Comparison of fractal model estimations with experimental data demonstrated that the new model performed well in predicting swelling characteristics affected by a salt solution.
As 1:1 dioctahedral clay minerals, kaolinite and halloysite have similar chemical compositions. However, halloysite often possesses a nanotubular structure and special surface reactivity compared to platy kaolinite. The objective of this current work was to determine the effect of the SiO2/Al2O3 ratio on the microstructure and properties of geopolymers derived from two kinds of kaolin: platy kaolinite and nanotubular halloysite. The chemical structures and compositions of the geopolymers obtained were characterized through X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR), whereas the microstructural analysis was performed by scanning electron microscopy (SEM), the Brunauer–Emmett–Teller (BET) method, and N2 physisorption analysis. The results indicated that calcined halloysite showed greater geopolymerization reactivity than calcined kaolinite. In addition, the mechanical properties of the clay-based geopolymers depended not only on the SiO2/Al2O3 ratio but also on the morphology of the clay. Crystalline zeolite A and geopolymer were produced after alkali-activation of kaolin with a SiO2/Al2O3 ratio of 2.5; these products possessed porous and heterogeneous microstructures having poor compressive strength. As SiO2/Al2O3 ratios increased to >2.5, geopolymers with compact microstructure and high compressive strength were produced after alkali-activation of kaolin. Notably, at a given condition, halloysite-based geopolymers exhibited greater early compressive strength, more compactness, and more homogeneous microstructure than kaolinite-based geopolymers. This can be attributed to the nanotubular microstructure of halloysite, which can release more Si and Al during alkali activation than platy kaolinite. These results indicated that the various morphologies and microstructures among clays have significant impact on the microstructure and compressive strength of geopolymers.
A typical feature of thermal convection is the formation of large-scale flow (LSF) structures of the order of system size. How this structure affects global heat transport is an important issue in the study of thermal convection. We present an experimental study of the coupling between the flow structure and heat transport in liquid metal convection with different degrees of spatial confinement, characterized by the aspect ratio $\varGamma$ of the convection cell. Combining measurements in two convection cells with $\varGamma =1.0$ and 0.5, the study shows that a large-scale circulation (LSC) transports ${\sim }35\,\%$ more heat than a twisted LSC. It is further found that when the LSF is in the form of the LSC state, the system is in a fully developed turbulence state with a $Nu\sim Ra^{0.29}$ scaling for the heat transport. However, the twisted LSC state with a heat transport scaling of $Nu\sim Ra^{0.37}$ appears when the system is not in the fully developed turbulence state. Bistability is observed when the system evolves from the twisted-LSC-dominated to the LSC-dominated state.
The relationships between childhood weight self-misperception and obesity-related factors particularly health markers have not been extensively discussed. This study aims to examine the associations between weight self-misperception and obesity-related knowledge, attitudes, lifestyles and cardio-metabolic markers among Chinese paediatric population.
Design:
Cross-sectional study.
Setting:
Data sourced from a national survey in Chinese seven provinces in 2013.
Participants:
Children and adolescents aged 5–19 years.
Results:
Of the total 14 079 participants, there were 14·5 % and 2·2 % participants over-estimated and under-perceived their weight, respectively. Multi-variable logistic regression was applied to calculate OR and 95 % CI (95 % Cl) of obesity-related behaviours and cardio-metabolic markers by actual and perceived weight status. Individuals who perceived themselves as overweight/obese were more likely to have prolonged screen time, insufficient dairy intake and over sugar-sweetened beverages consumption (all P < 0·05), regardless of their weight. Furthermore, actual overweight/obese individuals had higher odds of abnormal cardio-metabolic markers, but a smaller magnitude of association was found among weight under-estimators. Among non-overweight/obese individuals, weight over-estimation was positively associated with abdominal obesity (OR: 10·49, 95 % CI: 7·45, 14·76), elevated blood pressure (OR: 1·30, 95 % CI: 1·12, 1·51) and dyslipidemia (OR: 1·43, 95 % CI: 1·29, 1·58).
Conclusions:
Weight over-perception was more prevalent than under-estimation, particularly in girls. Weight over-estimators tended to master better knowledge but behave more unhealthily; both weight over-perception and actual overweight/obesity status were associated with poorer cardio-metabolic markers. Future obesity intervention programmes should additionally pay attention to the population with inaccurate estimation of weight who were easily overlooked.
Objectives: Medical devices and the hospital environment can be contaminated easily by multidrug-resistant bacteria. The effectiveness of cleaning practices is often suboptimal because environmental cleaning in hospitals is complex and depends on human factors, the physical and chemical characteristics of environment, and the viability of the microorganisms. Ultraviolet-C (UV-C) lamps can be used to reduce the spread of microorganisms. We evaluated the effectiveness of an ultraviolet-C (UV-C) device on terminal room cleaning and disinfection. Methods: The study was conducted at an ICU of a medical center in Taiwan. We performed a 3-stage evaluation for the effectiveness of UV-C radiation, including pre–UV-C radiation, UV-C radiation, and a bleaching procedure. The 3 stages of evaluation were implemented in the ICU rooms from which a patient had been discharged or transferred. We collected the data from adenosine triphosphate (ATP) bioluminescence testing, colonized strains, and their corresponding colony counts by sampling from the environmental surfaces and air. We tested 8 high-touch surfaces, including 2 sides of bed rails, headboards, footboards, bedside tables, monitors, pumping devices, IV stands, and oxygen flow meters. Results: In total, 1,696 environmental surfaces and 72 air samples were analyzed. The levels of ATP bioluminescence and colony counts of isolated bacteria decreased significantly after UV-C radiation and bleaching disinfection for both the environmental and air samples (P < .001). Resistant bacteria (vancomycin-resistant Enterococcus, VRE) were commonly isolated on the hard-to-clean surfaces of monitors, oxygen flow meters, and IV pumps. However, they were also eradicated (P < .001). Conclusions: UV-C can significantly reduce environmental contamination by multidrug-resistant microorganisms. UV-C is an effective device to assist staff in cleaning the hospital environment.
This paper presents systematic molecular dynamics modelling of Na-montmorillonite subjected to uniaxial compression and unidirectional shearing. An initial 3D model of a single-cell Na-montmorillonite structure is established using the Build Crystal module. The space group is C2/m, and COMPASS force fields are applied. Hydration analysis of Na-montmorillonite has been performed to validate the simulation procedures, where the number of absorbed water molecules varied with respect to the various lattice parameters. A series of uniaxial compression stress σzz and unidirectional shear stress τxy values are applied to the Na-montmorillonite structure. It is shown that the lattice parameter and hydration degree exhibit significant influence on the stress–strain relationship of Na-montmorillonite. The ultimate strain increases with increases in the lattice parameter but decreases in the number of water molecules. For saturated Na-montmorillonite, more water molecules result in a stiffer clay mineral under uniaxial compression and unidirectional shearing.