We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Loneliness and social isolation pose significant public health concerns globally, with adverse effects on mental health and well-being. Although the terms are often used interchangeably, loneliness refers to the subjective feeling of lacking social connections, whereas social isolation is the objective absence of social support or networks.
Aims
To investigate the prevalence of loneliness and social isolation and their associations with psychiatric disorders.
Method
This study used data from the Republic of Korea National Mental Health Survey 2021, a nationally representative survey. A total of 5511 adults aged 18–79 residing in South Korea participated in the survey. Loneliness and social isolation were assessed using the Loneliness and Social Isolation Scale, whereas psychiatric disorders were evaluated using the Korean version of the Composite International Diagnostic Interview. Multivariate logistic regressions were performed after adjustment for sociodemographic variables.
Results
Among the participants, 11.8% reported experiencing loneliness, 4.3% reported social isolation and 3.4% reported both. Co-occurrence of loneliness and social isolation was significantly associated with psychiatric disorders (adjusted odds ratio (AOR) 7.59, 95% CI: 5.48–10.52). Loneliness alone was associated with greater prevalence and higher probability of psychiatric disorders (AOR 3.12, 95% CI: 2.63–3.71), whereas social isolation did not show any significant association (AOR 0.88, 95% CI: 0.64–1.22).
Conclusion
The co-occurrence of loneliness and social isolation is particularly detrimental to mental health. This finding emphasises the need for targeted interventions to promote social connection and reduce feelings of isolation.
A simulation method has been developed to efficiently evaluate the motion of colloidal particles in a low-Reynolds-number confined microchannel flow using a Lagrangian-based approach. In this method, the background velocity within the channel, in the absence of suspended particles, is obtained from a fluid dynamics solver and is used to update the velocity at the particle centres using the Stokesian dynamics (SD) method, which incorporates multi-body hydrodynamic interactions. As a result, instead of computing the momentum of both the fluid and particles throughout the entire computational domain, the microscopic balance equation is solved only at the particle centres, increasing the computational efficiency. To accommodate complex boundary conditions within the SD framework, imaginary particles are placed on the channel walls, allowing the mobility relation to be reformulated to apply velocity constraints to immobilized wall particles. By employing this constrained SD approach, global mobility interactions that need to be computed at each time step are limited to the interior particles, resulting in a significant reduction in computational cost. The efficiency of this study is demonstrated through case studies on particulate flows in contraction and cross-flow microchannels. By using colloidal particles that incorporate Brownian motion and inter-particle attraction, observations through the entire stages of fouling dynamics are possible, from particle inflow to channel blockage. The fouling patterns observed in the simulations are consistent with experiments conducted under the same flow conditions. This study provides an efficient approach for analysing the effect of hydrodynamic interactions on particle dynamics in microfluidics and materials processing fields while allowing for predictions about structural changes over long-time scales, including complex phenomena such as clogging.
Aging ships and offshore structures face harsh environmental and operational conditions in remote areas, leading to age-related damages such as corrosion wastage, fatigue cracking, and mechanical denting. These deteriorations, if left unattended, can escalate into catastrophic failures, causing casualties, property damage, and marine pollution. Hence, ensuring the safety and integrity of aging ships and offshore structures is paramount and achievable through innovative healthcare schemes. One such paradigm, digital healthcare engineering (DHE), initially introduced by the final coauthor, aims at providing lifetime healthcare for engineered structures, infrastructure, and individuals (e.g., seafarers) by harnessing advancements in digitalization and communication technologies. The DHE framework comprises five interconnected modules: on-site health parameter monitoring, data transmission to analytics centers, data analytics, simulation and visualization via digital twins, artificial intelligence-driven diagnosis and remedial planning using machine and deep learning, and predictive health condition analysis for future maintenance. This article surveys recent technological advancements pertinent to each DHE module, with a focus on its application to aging ships and offshore structures. The primary objectives include identifying cost-effective and accurate techniques to establish a DHE system for lifetime healthcare of aging ships and offshore structures—a project currently in progress by the authors.
Boxwork fabric in which numerous thin or thick halloysite walls are interconnected into a microscopically porous cellular pattern is widely developed in the halloysite-rich kaolin formed by weathering of anorthosite in Sancheong, Korea. Studies using optical microscopy, scanning electron microscopy, and transmission electron microscopy have been carried out in order to elucidate the detailed features and origin of the boxwork.
In the early stage of weathering, halloysite spheres formed in etch pits on the walls of microstructural discontinuities in the slightly weathered rock. With further weathering, the halloysite spheres grew to discs or flattened globules, which in turn coalesced to form large planar halloysite plates amid narrow fissures. The halloysite plates were detached by dissolution of the plagioclase in groundwater. Continued growth of the halloysite tubes in the plates resulted in the wrinkling of the plates. Finally, the plagioclase was completely dissolved by groundwater, leaving the boxwork of wrinkled halloysite walls and large pores. The relatively high rigidity of the boxwork is due to the compact agglomeration of halloysite tubes within the wrinkled halloysite walls.
Cation balance calculation shows that Al was significantly mobilized during the formation of the boxwork in the weathering environment. The well-developed microfissures, the high dissolution rate of the calcic plagioclase, and the rapid flow of groundwater in a mountainous topography with relatively steep (20°) slope have been the factors controlling the formation of the porous boxwork in the halloysite-rich kaolin of the Sancheong area.
Fe-rich smectite is ubiquitous in soil environments and closely linked to the fate and mobility of hazardous trace metals and particularly to the variations in the biogeochemical redox reactions of structural Fe that determine the sorption and desorption properties of clay minerals. The biotic/abiotic redox reactions of a Fe-rich smectite, nontronite (NAu-1), were performed at various reaction times using the Fe-reducing bacterium Shewanella oneidensis MR-1 at 30°C and Na-dithionite (Na2S2O4), respectively. The extent of biotic Fe-reduction of NAu-1 after 30 days of incubation reached up to 10.7% of total Fe and the range of abiotic Fe-reduction varied from 4.9–46.6% at reaction times of 5 min, 30 min, 1 h, and 4 h. The biotically and abiotically Fe-reduced NAu-1 samples were spiked with Pb concentrations of 0.07, 0.2, 0.5, and 1.0 mg/kg and incubated under aerobic or anaerobic conditions for 24 h.
The amounts of Pb in the supernatants were analyzed using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Multi-collector (MC)-ICP-MS. The amounts of Pb removed from the supernatants were negatively related to the extent of Fe(III) reduction in the abiotically Fe-reduced NAu-1 samples. In contrast, less Pb (~15%) was removed from the biotically Fe-reduced NAu-1 samples with a similar extent of Fe(III) reduction. Changes in the isotopic 208/204Pb ratio indicated that the lighter 204Pb isotope was preferentially adsorbed to the NAu-1 samples with less Fe reduction and indicated that variations in the net layer charge affected isotopic fractionation. Significant differences in the 208/204Pb ratios for NAu-1 samples that were biotically Fe-reduced under anaerobic conditions were measured and indicate that the reversibility of the structural/chemical modifications that occur under redox conditions can affect Pb removal and, thus, isotope fractionation. These results collectively infer that the biogeochemical properties of clay minerals should be considered in order to understand the fate of trace metals in natural environments.
Mineralization of microbial biomass is a common phenomenon in geothermal habitats, but knowledge of the structure of the minerals formed in these environments is limited. A combination of spectroscopic, microscopic, and stable isotopic methods, as well as the chemical analysis of spring water, were employed in the present study to characterize calcium carbonate minerals deposited in filamentous cyanobacterial mats in different locations of La Duke hot spring, a circumneutral thermal feature near the north entrance of Yellowstone National Park, Montana, USA. Calcite was the primary crystalline mineral phase associated with biofilm-containing deposits closest to the source of the spring and the suspended microbial biomass in a pool further from the source. The carbonate minerals at all sites occurred as aggregated granules, ~2 μm in diameter, in close association with the microbial biomass. Only in the deposits closest to the source were the granules organized as laminated structures interspersed with microbial biomass. The calcium carbonate grains contained two distinct regions: a dense monolithic calcite core and a porous dendritic periphery containing organic matter (OM). Electron energy loss spectroscopy (EELS) indicated that the voids were infilled with OM and carbonates. The EELS technique was employed to distinguish the source of carbon in the organic matter and carbonate mixture. The studies of carbon isotope compositions of the calcium carbonates and the saturation indices for calcite in the spring waters suggest that processes (abiotic vs. biotic) controlling the carbonate formation may vary among the sampling sites.
Focus here is placed on the pharmaceutical and biomedical applications of novel clay-drug hybrid materials categorized by methods of administration. Clay minerals have been used for many years as pharmaceutical and medicinal ingredients for therapeutic purposes. A number of studies have attempted to explore clay-drug hybrid materials for biomedical applications with desired functions, such as sustained release, increased solubility, enhanced adsorption, mucoadhesion, biocompatibility, targeting, etc. The present review attempts not only to summarize the state-of-the-art of clay-drug hybrid materials and their advantages, depending on the methods of administration, but also to deal with challenges and future perspectives of clay mineral-based hybrids for biomedical applications.
The stria terminalis (ST) is a white matter tract with connections to limbic and autonomic brain structures that is implicated in affective functioning. Recent works suggests that ST functional integrity and connectivity is associated with faster responses to emotional cues (Dzafic et al., 2019) and may be influenced by environmental factors including socioeconomic status (SES) and childhood adversity (Banihashemi et al., 2020). The role of the ST in the experience of more daily affective experiences, such as depressive symptoms, remains unexplored. Therefore, the present study examined the role of the ST and SES, as assessed by household income, in the relationship between age and depressive symptoms in typically developing children and adolescents.
Participants and Methods:
Participants include 64 typically developing children and adolescents age 8-21 (Mage=13.27, SD=3.15) who participated in an ongoing study of development of neurocognitive and social-cognitive skills. Participants completed imaging on a 3Tesla MR Siemens PRISMA scanner. Tractography was executed via ENIGMA tract-based spatial statistics to quantify WM integrity and provided values for mean fractional anisotropy (mFA) of the ST. Depressive symptoms were measured with the Behavior Assessment Scale for Children-Third Edition (BASC-3) parent report scale, and annual family income was obtained per parent report. Mediation and moderation analyses were conducted using Process version 4.1 (Hayes, 2022) in SPSS version 28. As depression symptoms are often higher in early adolescence than later, we examined the indirect effect of age on depressive symptoms through ST mFA and evaluated this relationship at different levels of family income.
Results:
Age was associated with lower levels of depressive symptoms (b=-.98, t=-2.18, p<.05), whereas greater right ST mFA was associated with higher levels of depressive symptoms (b=42.05, t=2.50, p<.05). Right ST mFA explained significant variance in the relationship between age and parent-reported depression (ab=.13, 95% CI [.02, .29]). The conditional indirect effect of family income was significant for children with annual family incomes between 25-50k (effect=.16, 95% CI [.01, .38]) and 75-100k (effect=.13, 95% CI [.001, .31]), but not for 100k+ (effect=.11, 95% CI [-.05, .33]).
Conclusions:
The present study revealed a significant, positive relationship between white matter integrity in the right ST and parent-reported depressive symptoms in healthy children and young adults. Finding extend on prior work implicating the ST in threat responsivity (Dzafic et al., 2019). Moreover,results suggest the role of the ST in the relationship between age and depression depends on level of family income, such that ST mFA explains more variance at lower income levels, and is no longer significant for children from families with income greater than 100k. These findings support the notion that environmental stressors (such as lower family income) may strengthen ST pathways via activity-dependent plasticity and repeated, coordinated activation (Rinaman et al., 2011). Future studies should examine these brain-behavior associations, as they may replicate in a larger sample, with more nuanced indicators of environmental stress.
The “Fast track” protocol is an early extubation strategy to reduce ventilator-associated complications and induce early recovery after open-heart surgery. This study compared clinical outcomes between operating room extubation and ICU extubation after open-heart surgery in patients with CHD.
Methods:
We retrospectively reviewed 215 patients who underwent open-heart surgery for CHDs under the scheduled “Fast track” protocol between September 2016 and April 2022. The clinical endpoints were post-operative complications, including bleeding, respiratory and neurological complications, and hospital/ICU stays.
Results:
The patients were divided into operating room extubation (group O, n = 124) and ICU extubation (group I, n=91) groups. The most frequently performed procedures were patch closures of the atrial septal (107/215, 49.8%) and ventricular septal (89/215, 41.4%) defects. There were no significant differences in major post-operative complications or ICU and hospital stay duration between the two groups; however, patients in group I showed longer mechanical ventilatory support (0.0 min vs. 59.0 min (interquartile range: 17.0–169.0), p < 0.001). Patients in Group O showed higher initial lactate levels (3.2 ± 1.7 mg/dL versus 2.5 ± 2.0 mg/dL, p = 0.007) and more frequently used additional sedatives and opioid analgesics (33.1% versus 19.8%, p = 0.031).
Conclusions:
Extubation in the operating room was not beneficial for patients during post-operative ICU or hospital stay. Early extubation in the ICU resulted in more stable hemodynamics in the immediate post-operative period and required less use of sedatives and analgesics.
The aim of this study was to evaluate the impact of coronavirus disease 2019 (COVID-19) on treatment outcomes in critically ill patients with carbapenem-resistant Acinetobacter baumannii (CRAB) bloodstream infection (BSI). This single-centre, retrospective cohort study was conducted in a 1,048-bed university-affiliated tertiary hospital in the Republic of Korea from January 2021 to March 2022. The study participants included consecutive hospitalised adult patients (aged ≥18 years) in the intensive care unit with CRAB monomicrobial BSI. During the study period, a total of 70 patients were included in our study, and 24 (34.3%) were diagnosed with COVID-19. The 28-day mortality rate was 64.3%. In the multivariate Cox proportional hazard regression analysis, diagnosis of COVID-19 (hazard ratio (HR), 2.91; 95% confidence interval (CI): 1.45–5.87), neutropenia (HR, 2.76; 95% CI: 1.04–7.29), Pitt bacteraemia score (per point; HR, 1.30; 95% CI: 1.19–1.41), and appropriate definite antibiotic therapy (HR, 0.31; 95% CI: 0.15–0.62) were independent predictors of 28-day mortality in patients with CRAB BSI. In conclusion, our findings suggested that COVID-19 has a negative prognostic impact on patients with CRAB BSI. Further study is needed to investigate the specific mechanisms of how COVID-19 worsens the prognosis of CRAB infection.
Blood carotenoid concentration measurement is considered the gold standard for fruit and vegetable (F&V) intake estimation; however, this method is invasive and expensive. Recently, skin carotenoid status (SCS) measured by optical sensors has been evaluated as a promising parameter for F&V intake estimation. In this cross-sectional study, we aimed to validate the utility of resonance Raman spectroscopy (RRS)-assessed SCS as a biomarker of F&V intake in Korean adults. We used data from 108 participants aged 20–69 years who completed SCS measurements, blood collection and 3-d dietary recordings. Serum carotenoid concentrations were quantified using HPLC, and dietary carotenoid and F&V intakes were estimated via 3-d dietary records using a carotenoid database for common Korean foods. The correlations of the SCS with serum carotenoid concentrations, dietary carotenoid intake and F&V intake were examined to assess SCS validity. SCS was positively correlated with total serum carotenoid concentration (r = 0·52, 95 % CI = 0·36, 0·64, P < 0·001), serum β-carotene concentration (r = 0·60, 95 % CI = 0·47, 0·71, P < 0·001), total carotenoid intake (r = 0·20, 95 % CI = 0·01, 0·37, P = 0·04), β-carotene intake (r = 0·30, 95 % CI = 0·11, 0·46, P = 0·002) and F&V intake (r = 0·40, 95 % CI = 0·23, 0·55, P < 0·001). These results suggest that SCS can be a valid biomarker of F&V intake in Korean adults.
This study investigated the effect of the flavonoid-based compound isorhamnetin (ISO) on maturation and developmental competence in oxidative stress-exposed porcine oocytes in vitro. Treatment with 2 μM ISO (2 ISO) increases the developmental rate of oxidative stress-exposed porcine oocytes during in vitro maturation (IVM). The glutathione level and mRNA expression of antioxidant-related genes (NFE2L2 and SOD2) were increased in the 2 ISO-treated group, whereas the reactive oxygen species level was decreased. Treatment with 2 ISO increased mRNA expression of a cumulus cell expansion-related gene (SHAS2) and improved chromosomal alignment. mRNA expression of maternal genes (CCNB1, MOS, BMP15 and GDF9) and mitogen activated protein kinase (MAPK) activity were increased in the 2 ISO-treated group. The total cell number per blastocyst and percentage of apoptotic cells were increased and decreased in the 2 ISO-treated group, respectively. Treatment with 2 ISO increased mRNA expression of development-related genes (SOX2, NANOG, and POU5F1) and anti-apoptotic genes (BCL2L1 and BIRC5) and decreased that of pro-apoptotic genes (CASP3 and FAS). These results demonstrate that 2 ISO improves the quality of porcine oocytes by protecting them against oxidative stress during IVM and enhances subsequent embryo development in vitro. Therefore, we propose that ISO is a useful supplement for IVM of porcine oocytes.
In this review, we introduce our recent applications of deep learning to solar and space weather data. We have successfully applied novel deep learning methods to the following applications: (1) generation of solar farside/backside magnetograms and global field extrapolation based on them, (2) generation of solar UV/EUV images from other UV/EUV images and magnetograms, (3) denoising solar magnetograms using supervised learning, (4) generation of UV/EUV images and magnetograms from Galileo sunspot drawings, (5) improvement of global IRI TEC maps using IGS TEC ones, (6) one-day forecasting of global TEC maps through image translation, (7) generation of high-resolution magnetograms from Ca II K images, (8) super-resolution of solar magnetograms, (9) flare classification by CNN and visual explanation by attribution methods, and (10) forecasting GOES solar X-ray profiles. We present major results and discuss them. We also present future plans for integrated space weather models based on deep learning.
Background: Although small- and medium-sized hospitals comprise most healthcare providers in South Korea, data on antibiotic usage is limited in these facilities. We evaluated the pattern of antibiotic usage and its appropriateness in hospitals with <400 beds in South Korea. Methods: A multicenter retrospective study was conducted in 10 hospitals (6 long-term care hospitals, 3 acute-care hospitals, and 1 orthopedic hospital), with <400 beds in South Korea. We analyzed patterns of antibiotic prescription and their appropriateness in the participating hospitals. Data on the monthly antibiotic prescriptions and patient days for hospitalized patients were collected using electronic databases from each hospital. To avoid the effect of the COVID-19 pandemic, data were collected from January to December 2019. For the evaluation of the appropriateness of the prescription, 25 patients under antibiotic therapy were randomly selected at each hospital over 2 separate periods. Due to the heterogeneity of their characteristics, the orthopedics hospital was excluded from the analysis. The collected data were reviewed, and the appropriateness of antibiotic prescriptions was evaluated by 5 specialists in infectious diseases (adult and pediatric). Data from 2 hospitals were assigned to each specialist. The appropriateness of antibiotic prescriptions was evaluated from 3 aspects: route of administration, dose, and class. If the 3 aspects were ‘optimal,’ the prescription was considered ‘optimal.’ If only the route was ‘optimal,’ and the dose and/or class was ‘suboptimal,’ but not ‘inappropriate,’ it was considered ‘suboptimal.’ If even 1 aspect was ‘inappropriate,’ it was classified as ‘inappropriate.’ Results: The most commonly prescribed antibiotics in long-term care hospitals was fluoroquinolone, followed by β-lactam/β-lactamase inhibitor (antipseudomonal). In acute-care hospitals, these were third-generation cephalosporin, followed by first-generation cephalosporin and second-generation cephalosporin. The major antibiotics that were prescribed in the orthopedics hospital was first-generation cephalosporin. Only 2.3% of the antibiotics were administered inappropriately. In comparison, 15.3% of patients were prescribed an inappropriate dose. The proportion of inappropriate antibiotic prescriptions was 30.6% of the total antibiotic prescriptions. Conclusions: The antibiotic usage patterns vary between small- and medium-sized hospitals in South Korea. The proportion of inappropriate prescriptions exceeded 30% of the total antibiotic prescriptions.
Our previous studies have already revealed that β-cryptoxanthin (BCX), hesperetin (HES), and icariin (ICA) antioxidants are effective for in vitro maturation (IVM) of porcine oocytes. In this study, we investigated which of BCX, HES, or ICA was more effective for IVM of porcine oocytes. The antioxidant properties were assessed with aged porcine oocytes and embryos by comparing 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), reducing power, and H2O2 scavenging activity assays. The chemical assay results demonstrated that BCX had a greater DPPH scavenging activity and reducing power than HES and ICA, compared with controls. However, the H2O2 scavenging activity of the antioxidants was similar when tested at the optimal concentrations of 1 μM BCX (BCX-1), 100 μM HES (HES-100), and 5 μM ICA (ICA-5). The biological assay results showed that BCX-1 treatment was more effective in inducing a significant reduction in reactive oxygen species (ROS), improving glutathione levels, and increasing the expression of antioxidant genes. In addition, BCX-1 inhibited apoptosis by increasing the expression of anti-apoptotic genes and decreasing pro-apoptotic genes in porcine parthenogenetic blastocysts. BCX-1 also significantly increased the blastocyst formation rate compared with the ageing control group, HES-100 and ICA-5. This study demonstrates that damage from ROS produced during oocyte ageing can be prevented by supplementing antioxidants into the IVM medium, and BCX may be a potential candidate to improve assisted reproductive technologies.
This study aimed to determine the effect of donor-transmitted atherosclerosis on the late aggravation of cardiac allograft vasculopathy in paediatric heart recipients aged ≥7 years.
Methods:
In total, 48 patients were included and 23 had donor-transmitted atherosclerosis (baseline maximal intimal thickness of >0.5 mm on intravascular ultrasonography). Logistic regression analyses were performed to identify risk factors for donor-transmitted atherosclerosis. Rates of survival free from the late aggravation of cardiac allograft vasculopathy (new or worsening cardiac allograft vasculopathy on following angiograms, starting 1 year after transplantation) in each patient group were estimated using the Kaplan–Meier method and compared using the log-rank test. The effect of the results of intravascular ultrasonography at 1 year after transplantation on the late aggravation of cardiac allograft vasculopathy, correcting for possible covariates including donor-transmitted atherosclerosis, was examined using the Cox proportional hazards model.
Results:
The mean follow-up duration after transplantation was 5.97 ± 3.58 years. The log-rank test showed that patients with donor-transmitted atherosclerosis had worse survival outcomes than those without (p = 0.008). Per the multivariate model considering the difference of maximal intimal thickness between baseline and 1 year following transplantation (hazard ratio, 22.985; 95% confidence interval, 1.948–271.250; p = 0.013), donor-transmitted atherosclerosis was a significant covariate (hazard ratio, 4.013; 95% confidence interval, 1.047–15.376; p = 0.043).
Conclusion:
Paediatric heart transplantation recipients with donor-transmitted atherosclerosis aged ≥7 years had worse late cardiac allograft vasculopathy aggravation-free survival outcomes.
Network approach has been applied to a wide variety of psychiatric disorders. The aim of the present study was to identify network structures of remitters and non-remitters in patients with first-episode psychosis (FEP) at baseline and the 6-month follow-up.
Methods
Participants (n = 252) from the Korean Early Psychosis Study (KEPS) were enrolled. They were classified as remitters or non-remitters using Andreasen's criteria. We estimated network structure with 10 symptoms (three symptoms from the Positive and Negative Syndrome Scale, one depressive symptom, and six symptoms related to schema and rumination) as nodes using a Gaussian graphical model. Global and local network metrics were compared within and between the networks over time.
Results
Global network metrics did not differ between the remitters and non-remitters at baseline or 6 months. However, the network structure and nodal strengths associated with positive-self and positive-others scores changed significantly in the remitters over time. Unique central symptoms for remitters and non-remitters were cognitive brooding and negative-self, respectively. The correlation stability coefficients for nodal strength were within the acceptable range.
Conclusion
Our findings indicate that network structure and some nodal strengths were more flexible in remitters. Negative-self could be an important target for therapeutic intervention.
Radiocarbon (14C) dating has been widely used to determine the age of deposits, but there have been frequent reports of inconsistencies in age among different dating materials. In this study, we performed radiocarbon dating on a total of 33 samples from 8-m-long sediment cores recovered from the wetland of the Muljangori volcanic cone on Jeju Island, South Korea. Ten pairs of humic acid (HA) and plant fragments (PF) samples, and three pairs of HA and humin samples, from the same depths were compared in terms of age. The PF were consistently younger than the HA. Interestingly, the age difference between HA and PF samples showed a long-term change during the past 8000 years. To test whether there was an association between this long-term age difference and climate change, we compared with the carbon/nitrogen (C/N) ratios and total organic carbon isotope (δ13CTOC) values of the sediments, as indicators of the relative abundance of terrestrial and aquatic plants; these parameters showed similar long-term trends. This suggests that the increasing (decreasing) trend in age difference was influenced by long-term dry (wet) climate change.