We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: TERT promoter mutation (TPM) is an established biomarker in meningiomas associated with aberrant TERT expression and reduced progression-free survival (PFS). TERT expression, however, has also been observed even in tumours with wildtype TERT promoters (TP-WT). This study aimed to examine TERT expression and clinical outcomes in meningiomas. Methods: TERT expression, TPM status, and TERT promoter methylation of a multi-institutional cohort of meningiomas (n=1241) was assessed through nulk RNA sequencing (n=604), Sanger sequencing of the promoter (n=1095), and methylation profiling (n=1218). 380 Toronto meningiomas were used for discovery, and 861 external institution samples were compiled as a validation cohort. Results: Both TPMs and TERTpromoter methylation were associated with increased TERT expression and may represent independent mechanisms of TERT reactivation. TERT expression was detected in 30.4% of meningiomas that lacked TPMs, was associated with higher WHO grades, and corresponded to shorter PFS, independent of grade and even among TP-WT tumours. TERT expression was associated with a shorter PFS equivalent to those of TERT-negative meningiomas of one higher grade. Conclusions: Our findings highlight the prognostic significance of TERT expression in meningiomas, even in the absence of TPMs. Its presence may identify patients who may progress earlier and should be considered in risk stratification models.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
The axisymmetric nozzle mechanism is the core part for thrust vectoring of aero engine, which contains complex rigid-flexible coupled multibody system with joints clearance and significantly reduces the efficiency in modeling and calculation, therefore the kinematics and dynamics analysis of axisymmetric vectoring nozzle mechanism based on deep neural network is proposed. The deep neural network model of the axisymmetric vector nozzle is established according to the limited training data from the physical dynamic model and then used to predict the kinematics and dynamics response of the axisymmetric vector nozzle. This study analyses the effects of joint clearance on the kinematics and dynamics of the axisymmetric vector nozzle mechanism by a data-driven model. It is found that the angular acceleration of the expanding blade and the driving force are mostly affected by joint clearance followed by the angle, angular velocity and position of the expanding blade. Larger joint clearance results in more pronounced fluctuations of the dynamic response of the mechanism, which is due to the greater relative velocity and contact force between the bushing and the pin. Since axisymmetric vector nozzles are highly complex nonlinear systems, traditional numerical methods of dynamics are extremely time-consuming. Our work indicates that the data-driven approach greatly reduces the computational cost while maintaining accuracy, and can be used for rapid evaluation and iterative computation of complex multibody dynamics of engine nozzle mechanism.
Auricular pseudocysts are rare, painless, benign intracartilaginous cysts of the auricle that are not lined by epithelium and have no known aetiology.
Method
This was a prospective study conducted in an ENT department from January 2020 to June 2022. In 21 patients, complete aspiration of the pseudocyst with enhanced negative drainage was performed. They were followed for a minimum of six months.
Results
All patients completely responded to the negative drainage treatment. No cases of recurrence or obvious deformities were observed.
Conclusion
Aspiration with intensified negative drainage was associated with a positive response in patients with auricular pseudocysts. Complete resolution of the swelling can be achieved without any serious complications. Thus, it appears to be a simple and effective method for managing the condition.
The Australian SKA Pathfinder (ASKAP) is being used to undertake a campaign to rapidly survey the sky in three frequency bands across its operational spectral range. The first pass of the Rapid ASKAP Continuum Survey (RACS) at 887.5 MHz in the low band has already been completed, with images, visibility datasets, and catalogues made available to the wider astronomical community through the CSIRO ASKAP Science Data Archive (CASDA). This work presents details of the second observing pass in the mid band at 1367.5 MHz, RACS-mid, and associated data release comprising images and visibility datasets covering the whole sky south of $\delta_{\text{J2000}}=+49^\circ$. This data release incorporates selective peeling to reduce artefacts around bright sources, as well as accurately modelled primary beam responses. The Stokes I images reach a median noise of 198 $\mu$Jy PSF$^{-1}$ with a declination-dependent angular resolution of 8.1–47.5 arcsec that fills a niche in the existing ecosystem of large-area astronomical surveys. We also supply Stokes V images after application of a widefield leakage correction, with a median noise of 165 $\mu$Jy PSF$^{-1}$. We find the residual leakage of Stokes I into V to be $\lesssim 0.9$–$2.4$% over the survey. This initial RACS-mid data release will be complemented by a future release comprising catalogues of the survey region. As with other RACS data releases, data products from this release will be made available through CASDA.
Background: Enhanced recovery after surgery (ERAS) concept has been implemented in many surgical specialties, with improved surgical and clinical outcomes, all while decreasing hospital cost. We have established a single center ERAS protocol for Anterior Cervical Discectomy and Fusion (ACDF) same-day surgeries. Methods: A retrospective analysis of prospective collected data of all patients undergoing one to two level ACDF surgeries at the CHUM based on a patient selection criteria’s list. Demographics, BMI, patient report outcome measures (NDI, VAS, mJOA), operative time, wake up time, time in recovery room and time till discharge were analysed. Complications were also noted. Results: When compared to our pre-ERAS group, our study showed that an ERAS protocol in select patients is not associated with any peri-operative complications, no 30-day / 90-day readmissions, nor any conversion to admission. All patients were safely discharged as planned. Operative length was similar. There was no dysphagia noted. There was improvement in all PROMs. Conclusions: ERAS protocol for ACDF same day surgeries in carefully selected patients is safe and provide same clinical outcomes. Meticulous surgical techniques, close post operative observation with a follow-up telephone call the next day are all key in assuring a safe and successful surgery and patient discharge.
FFD (free-form deformation method) is one of the most commonly used parameterisation methods at present. It places the parameterised objects inside the control volume through coordinate system transformation, and controls the control volume through control points, thus realising the deformation control of its internal objects. Firstly, this paper systematically analyses and compares the characteristics and technical requirements of Bernstein, B-spline and NURBS (non-uniform rational b-splines) basic functions that can be adopted by FFD, and uses the minimum number of control points required to achieve the specified control effect threshold to express the control capability. Aiming at the problem of discontinuity at the right end in the actual calculation of B-spline basis function, a method of adding a small epsilon is proposed to solve it. Then, three basic functions are applied to the FFD parameterisation method, respectively, and the differences are compared from two aspects of the accurate expression of the model and the ability of deformation control. It is found that the BFFD (b-spline free-form deformation) approach owns better comprehensive performance when the control points are distributed correctly. In this paper, the BFFD method is improved, and a p-BFFD (reverse solution points based BFFD) method based on inverse solution is proposed to realise the free distribution of control points under the specified topology. Further, for the lifting body configuration, the control points of the p-BFFD method are brought closer to the airframe forming the EDGE-p-BFFD (edge constraints based p-BFFD) method. For the case in this paper, the proposed EDGE-p-BFFD method not only has fairly high parameterisation accuracy, but also reduces the expression error from 1.01E-3 to 1.25E-4, which is nearly ten times. It can also achieve effective lifting body guideline constraints, and has the ability of local deformation adapting to the configuration characteristics. In terms of the proportion of effective control points, the EDGE-p-BFFD method increases the proportion of effective control points from 36.7% to 50%, and the more control points, the more obvious the proportion increase effect. The new method also has better effect on the continuity of geometric deformation. At the same time, this paper introduces the independent deformation method of the upper and lower surfaces based on the double control body frames, which effectively avoids the deformation coupling problem of the simultaneous change of the upper and lower surfaces caused by the movement of control points in the traditional single control framework.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
To summarise and describe the clinical presentations, diagnostic approaches and airway management techniques in children with laryngotracheal trauma.
Methods
The clinical data related to laryngotracheal trauma diagnosed and treated at the Beijing Children's Hospital, between January 2013 and July 2018, were retrospectively reviewed. Disease diagnosis, treatment, management and outcomes were analysed.
Results
A total of 13 cases were enrolled, including 7 cases of penetrating laryngotracheal trauma. The six cases of blunt laryngotracheal trauma were caused by collisions with hard objects. In all cases, voice, airway and swallowing outcomes were graded as ‘good’, except for one patient who had residual paralysis of the vocal folds.
Conclusion
Flexible fibre-optic laryngoscopy and computed tomography can play an important role in diagnosing laryngotracheal trauma. The airway should be secured and, if necessary, opened by tracheal intubation or tracheostomy.
Flutter suppression is an important measure to improve fatigue life and enhance the performance of aircraft in modern aircraft design. In order to design more effective controllers for flutter suppression with high efficiency, an efficient reduced-order framework for active/passive hybrid flutter suppression is proposed. The traditional CFD-based ROMs have been successfully applied to active flutter suppression with high accuracy and efficiency. But, when a structure modification is made such as in aeroelastic tailoring and aeroelastic structural optimisation, the structural model should be updated, and the expensive, time-consuming CFD-based ROMs have to be reconstructed; such a process is impractical for passive flutter suppression. To overcome the realistic challenge, an efficient reduced-order framework for active/passive hybrid flutter suppression is proposed by extending an efficient aeroelastic CFD-based POD/ROM which we have developed. The proposed framework is demonstrated and evaluated using an improved AGARD 445.6 wing model. The results show that the proposed framework can accurately predict the aeroelastic response for active/passive hybrid flutter suppression with high efficiency. It provides a powerful tool for active/passive hybrid flutter suppression, and therefore, is ideally suited to design more effective controllers, and may have the potential to reduce the overall cost of aircraft design.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
Dry wind-tunnel (DWT) flutter test systems model the unsteady distributed aerodynamic force using various electromagnetic exciters. They can be used to test the aeroelastic and aeroservoelastic stability of smart aircraft or high-speed flight vehicles. A new parameterised modelling method at the full system level based on the generalised force equivalence for DWT flutter systems is proposed herein. The full system model includes the structural dynamic model, electromechanical coupling model and fast aerodynamic computation model. An optimisation search method is applied to determine the best locations for measurement and excitation by introducing Fisher’s information matrix. The feasibility and accuracy of the proposed system-level numerical DWT modelling method have been validated for a plate aeroelastic model with four exciters/transducers. The effects of key parameters including the number of exciters, the control time delay, the noise interference and the electrical parameters of the electromagnetic exciter model have also been investigated. The numerical and experimental results indicate that the proposed modelling method achieves good accuracy (with deviations of less than 1.5% from simulations and 4.5% from experimental test results for the flutter speed) and robust performance even in uncertain environments with a 10% noise level.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
To evaluate the impacts of guanidinoacetic acid (GAA) and coated folic acid (CFA) on growth performance, nutrient digestion and hepatic gene expression, fifty-two Angus bulls were assigned to four groups in a 2 × 2 factor experimental design. The CFA of 0 or 6 mg/kg dietary DM folic acid was supplemented in diets with GAA of 0 (GAA−) or 0·6 g/kg DM (GAA+), respectively. Average daily gain (ADG), feed efficiency and hepatic creatine concentration increased with GAA or CFA addition, and the increased magnitude of these parameters was greater for addition of CFA in GAA− diets than in GAA+ diets. Blood creatine concentration increased with GAA or CFA addition, and greater increase was observed when CFA was supplemented in GAA+ diets than in GAA− diets. DM intake was unchanged, but rumen total SCFA concentration and digestibilities of DM, crude protein, neutral-detergent fibre and acid-detergent fibre increased with the addition of GAA or CFA. Acetate:propionate ratio was unaffected by GAA, but increased for CFA addition. Increase in blood concentrations of albumin, total protein and insulin-like growth factor-1 (IGF-1) was observed for GAA or CFA addition. Blood folate concentration was decreased by GAA, but increased with CFA addition. Hepatic expressions of IGF-1, phosphoinositide 3-kinase, protein kinase B, mammalian target of rapamycin and ribosomal protein S6 kinase increased with GAA or CFA addition. Results indicated that the combined supplementation of GAA and CFA could not cause ADG increase more when compared with GAA or CFA addition alone.
Coated copper sulphate (CCS) could be used as a Cu supplement in cows. To investigate the influences of copper sulphate (CS) and CCS on milk performance, nutrient digestion and rumen fermentation, fifty Holstein dairy cows were arranged in a randomised block design to five groups: control, CS addition (7·5 mg Cu/kg DM from CS) or CCS addition (5, 7·5 and 10 mg Cu/kg DM from CCS, respectively). When comparing Cu source at equal inclusion rates (7·5 mg/kg DM), cows receiving CCS addition had higher yields of fat-corrected milk, milk fat and protein; digestibility of DM, organic matter (OM) and neutral-detergent fibre (NDF); ruminal total volatile fatty acid (VFA) concentration; activities of carboxymethyl cellulase, cellobiase, pectinase and α-amylase; populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes; and liver Cu content than cows receiving CS addition. Increasing CCS addition, DM intake was unchanged, yields of milk, milk fat and protein; feed efficiency; digestibility of DM, OM, NDF and acid-detergent fibre; ruminal total VFA concentration; acetate:propionate ratio; activity of cellulolytic enzyme; populations of total bacteria, protozoa and dominant cellulolytic bacteria; and concentrations of Cu in serum and liver increased linearly, but ruminal propionate percentage, ammonia-N concentration, α-amylase activity and populations of Prevotella ruminicola and Ruminobacter amylophilus decreased linearly. The results indicated that supplement of CS could be substituted with CCS and addition of CCS improved milk performance and nutrient digestion in dairy cows.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Guanidinoacetic acid (GAA) can improve the growth performance of bulls. This study investigated the influences of GAA addition on growth, nutrient digestion, ruminal fermentation and serum metabolites in bulls. Forty-eight Angus bulls were randomly allocated to experimental treatments, that is, control, low-GAA (LGAA), medium-GAA (MGAA) and high-GAA (HGAA), with GAA supplementation at 0, 0.3, 0.6 and 0.9 g/kg DM, respectively. Bulls were fed a basal diet containing 500 g/kg DM concentrate and 500 g/kg DM roughage. The experimental period was 104 days, with 14 days for adaptation and 90 days for data collection. Bulls in the MGAA and HGAA groups had higher DM intake and average daily gain than bulls in the LGAA and control groups. The feed conversion ratio was lowest in MGAA and highest in the control. Bulls receiving 0.9 g/kg DM GAA addition had higher digestibility of DM, organic matter, NDF and ADF than bulls in other groups. The digestibility of CP was higher for HGAA than for LGAA and control. The ruminal pH was lower for MGAA, and the total volatile fatty acid concentration was greater for MGAA and HGAA than for the control. The acetate proportion and acetate-to-propionate ratio were lower for MGAA than for LGAA and control. The propionate proportion was higher for MGAA than for control. Bulls receiving GAA addition showed decreased ruminal ammonia N. Bulls in MGAA and HGAA had higher cellobiase, pectinase and protease activities and Butyrivibrio fibrisolvens, Prevotella ruminicola and Ruminobacter amylophilus populations than bulls in LGAA and control. However, the total protozoan population was lower for MGAA and HGAA than for LGAA and control. The total bacterial and Ruminococcus flavefaciens populations increased with GAA addition. The blood level of creatine was higher for HGAA, and the activity of l-arginine glycine amidine transferase was lower for MGAA and HGAA, than for control. The blood activity of guanidine acetate N-methyltransferase and the level of folate decreased in the GAA addition groups. The results indicated that dietary addition of 0.6 or 0.9 g/kg DM GAA improved growth performance, nutrient digestion and ruminal fermentation in bulls.
Leg weakness (LW) issues are a great concern for pig breeding industry. And it also has a serious impact on animal welfare. To dissect the genetic architecture of limb-and-hoof firmness in commercial pigs, a genome-wide association study was conducted on bone mineral density (BMD) in three sow populations, including Duroc, Landrace and Yorkshire. The BMD data were obtained by ultrasound technology from 812 pigs (including Duroc 115, Landrace 243 and Yorkshire 454). In addition, all pigs were genotyped using genome-by-sequencing and a total of 224 162 single-nucleotide polymorphisms (SNPs) were obtained. After quality control, 218 141 SNPs were used for subsequent genome-wide association analysis. Nine significant associations were identified on chromosomes 3, 5, 6, 7, 9, 10, 12 and 18 that passed Bonferroni correction threshold of 0.05/(total SNP numbers). The most significant locus that associated with BMD (P value = 1.92e−14) was detected at approximately 41.7 Mb on SSC6 (SSC stands for Sus scrofa chromosome). CUL7, PTK7, SRF, VEGFA, RHEB, PRKAR1A and TPO that are located near the lead SNP of significant loci were highlighted as functionally plausible candidate genes for sow limb-and-hoof firmness. Moreover, we also applied a new method to measure the BMD data of pigs by ultrasound technology. The results provide an insight into the genetic architecture of LW and can also help to improve animal welfare in pigs.
White-light continuum can be induced by the interaction of intense femtosecond laser pulses with condensed materials. By using two orthogonal polarizers, a self-induced birefringence of continuum is observed when focusing femtosecond laser pulses into bulk fused silica. That is, the generated white-light continuum is synchronously modulated anisotropically while propagating in fused silica. Time-resolved detection confirms that self-induced birefringence of continuum shows a growth and saturation feature with time evolution. By adjusting laser energy, the transmitted intensity of continuum modulated by self-induced birefringence also varies correspondingly. Morphology analysis with time evolution indicates that it is the focused femtosecond laser pulses that induce anisotropic microstructures in bulk fused silica, and the anisotropic structures at the same time modulate the generated continuum.
Porphyromonas gingivalis has been linked to the development and progression of oesophageal squamous cell carcinoma (ESCC), and is considered to be a high-risk factor for ESCC. Currently, the commonly used methods for P. gingivalis detection are culture or DNA extraction-based, which are either time and labour intensive especially for high-throughput applications. We aimed to establish and evaluate a rapid and sensitive direct quantitative polymerase chain reaction (qPCR) protocol for the detection of P. gingivalis without DNA extraction which is suitable for large-scale epidemiological studies. Paired gingival swab samples from 192 subjects undergoing general medical examinations were analysed using two direct and one extraction-based qPCR assays for P. gingivalis. Tris-EDTA buffer-based direct qPCR (TE-direct qPCR), lysis-based direct qPCR (lysis-direct qPCR) and DNA extraction-based qPCR (kit-qPCR) were used, respectively, in 192, 132 and 60 of these samples for quantification of P. gingivalis. The sensitivity and specificity of TE-direct qPCR was 95.24% and 100% compared with lysis-direct qPCR, which was 100% and 97.30% when compared with kit-qPCR; TE-direct qPCR had an almost perfect agreement with lysis-direct qPCR (κ = 0.954) and kit-qPCR (κ = 0.965). Moreover, the assay time used for TE-direct qPCR was 1.5 h. In conclusion, the TE-direct qPCR assay is a simple and efficient method for the quantification of oral P. gingivalis and showed high sensitivity and specificity compared with routine qPCR.