We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The interaction of helminth infections with type 2 diabetes (T2D) has been a major area of research in the past few years. This paper, therefore, focuses on the systematic review of the effects of helminthic infections on metabolism and immune regulation related to T2D, with mechanisms through which both direct and indirect effects are mediated. Specifically, the possible therapeutic role of helminths in T2D management, probably mediated through the modulation of host metabolic pathways and immune responses, is of special interest. This paper discusses the current possibilities for translating helminth therapy from basic laboratory research to clinical application, as well as existing and future challenges. Although preliminary studies suggest the potential for helminth therapy for T2D patients, their safety and efficacy still need to be confirmed by larger-scale clinical studies.
Dot array deposition through electrohydrodynamic (EHD) printing is widely used for high resolution and material utilization advantages. However, the conventional printing method is subject to a printing frequency limit known as the capillary frequency of the meniscus oscillation, where the jet directly contacts the substrate. This makes the printing frequency of EHD printing maintain at a low level and that is difficult to improve. In this work, a method for high-frequency EHD printing through continuous pinch-off is proposed. The characteristic frequency is broken through. A model is established to reveal the printing mechanism by combining the Poisson–Nernst–Planck equation and the phase field method. The unreal charge leakage is prevented by constructing a transition function for the fluid’s properties. The stability of the Taylor cone’s deformation and the droplets’ generation is studied. The measurement criterion for printing frequency is determined. The suitable printing height that can prevent the jet from directly contacting the substrate is obtained by investigating its influence on the printing states and frequency. The phase diagram considering the liquid’s conductivity and viscosity is presented to distinguish whether the printing is based on the end-pinching or Rayleigh–Plateau instability. The influence of the conductivity, viscosity, flow rate and printing voltage on the printing frequencies is studied quantitatively. Finally, scaling laws for printing frequency are proposed by theoretical analyses and summarizing the numerical data. This work could be beneficial for further enhancing the printing frequency of EHD printing.
To evaluate the prognostic value of electrocardiographic ventricular repolarisation parameters in children with dilated cardiomyopathy.
Methods:
A retrospective study was conducted involving 89 children with dilated cardiomyopathy [age 5.24 (4.32, 6.15) years] as the research group, and a control group consisting of 80 healthy children matched for age and sex. Within the research group, there were 76 cases in the survival subgroup and 13 cases in the death subgroup. Ventricular repolarisation parameters were measured.
Results:
(1) Compared to the control group, both QTcmax and QTcmin were significantly prolonged in the research group (P < 0.01). Additionally, Tp-Te /QT ratios for leads III, aVL, V1, V2, and V3 showed an increase (P < 0.05), while T-wave amplitudes for leads I, II, aVL, aVF, V4, V5, and V6 exhibited a decrease (P < 0.05). (2) In comparison to the survival subgroup, the diameters of the LV, RV, LA, and RA in the death subgroup were enlarged, while the left ventricular ejection fraction and eft ventricular fractional shortening were decreased (P < 0.05). The Tp-Te /QT ratios for leads aVR, V5, and V6 also increased notably (P < 0.05 or P < 0.01). The T-wave amplitude readings from leads II, aVF, and V6 demonstrated significant reductions (P < 0.05).
Conclusion:
Abnormal ventricular repolarisation parameters were found in dilated cardiomyopathy children. Increased Tp-Te /QT ratios in aVR, V5, and V6 leads and decreased T-wave amplitudes in II, aVF, and V6 leads were risk factors for predicting mortality in children with dilated cardiomyopathy.
We study density properties of orbits for a hypercyclic operator T on a separable Banach space X, and show that exactly one of the following four cases holds: (1) every vector in X is asymptotic to zero with density one; (2) generic vectors in X are distributionally irregular of type $1$; (3) generic vectors in X are distributionally irregular of type $2\frac {1}{2}$ and no hypercyclic vector is distributionally irregular of type $1$; (4) every hypercyclic vector in X is divergent to infinity with density one. We also present some examples concerned with weighted backward shifts on $\ell ^p$ to show that all the above four cases can occur. Furthermore, we show that similar results hold for $C_0$-semigroups.
To investigate the association of dietary patterns (DPs) with prediabetes and Type 2 Diabetes among Tibetan adults, first to identify DPs associated with abdominal obesity and examine their relationships with prediabetes and type 2 diabetes. Additionally, the study aims to investigate the mediating effects of body fat distribution and altitude on the associations between these DPs and the prevalence of prediabetes and Type 2 Diabetes.
Design:
An open cohort among Tibetans.
Setting:
Community-based.
Participants:
The survey recruited 1003 participants registered for health check-ups from November to December 2018, and 1611 participants from December 2021 to May 2022. During the baseline and follow-up data collection, 1818 individuals participated in at least one of the two surveys, with 515 of them participating in both.
Results:
Two DPs were identified by reduced rank regression (RRR). DP1 had high consumption of beef and mutton, non-caloric drink, offal, and low intake in tubers and roots, salty snacks, onion and spring onion, fresh fruits, desserts and nuts and seeds; DP2 had high intake of whole grains, Tibetan cheese, light-colored vegetables and pork and low of sugar-sweetened beverages, whole-fat dairy and poultry. Individuals in the highest tertile of DP1 showed higher risks of prediabetes (OR 95% CI) 1.35 (1.05, 1.73) and T2D 1.36 (1.05, 1.76). In the highest tertile of DP2 exhibited an elevated risk of T2D 1.63 (1.11, 2.40) in fully adjustment.
Conclusion:
Abdominal adiposity-related DPs are positively associated with T2D. Promoting healthy eating should be considered to prevent T2D among Tibetan adults.
As cities like Beijing expand rapidly, green and blue spaces (GBS)—essential for ecosystem services (ESs) such as clean air, flood control, and recreation—are increasingly threatened. This 20-year study examines how urban expansion and policy interventions have shaped Beijing’s GBS. While green initiatives have increased natural areas, unchecked urban sprawl has fragmented these spaces, reducing their environmental benefits. Satellite data and urban planning analyses underscore a key lesson: maintaining well-connected natural zones is critical for urban resilience. These findings are broadly applicable for rapidly growing cities globally, urging urban planners to integrate ecological conservation with development, and to safeguard healthy environments and vibrant communities.
Technical Summary
This study quantifies the spatiotemporal dynamics of urban GBS in Beijing, evaluating their essential role in delivering ESs and strengthening urban resilience. Although China has achieved substantial progress in urban greening, the ecological impacts of rapid urbanization on GBS configuration and connectivity have not been comprehensively quantified. Using an integrated analytical framework combining principal component analysis and multiple linear regression, we reveal how urban development strategies have shaped GBS dynamics over two decades. A spatially explicit analysis, utilizing geographically weighted regression, further elucidates the heterogeneous relationships among the normalized difference vegetation index, human footprint index, and ESs delivery capacity. Notably, socioeconomic incentives and green infrastructure governance—especially objective indicators such as forest, garden, and greenspace area—have effectively driven GBS expansion. However, urban expansion has led to pronounced fragmentation of peri-urban GBS, suggesting potential degradation of their ecosystem service support functions. These findings emphasize the need for adaptive GBS management strategies that balance ecological conservation with sustainable urban growth in rapidly developing cities.
Social Media Summary
Urban growth fragments green and blue spaces, reducing vital ecosystem services. Balancing conservation with development is essential for sustainable cities.
Non-spherical bubble collapses near solid boundaries, generating water hammer pressures and shock waves, were recognized as key mechanisms for cavitation erosion. However, there is no agreement on local erosion patterns, and cavitation erosion damage lacks quantitative analysis. In our experiments, five distinct local erosion patterns were identified on aluminium sample surfaces, resulting from the collapse of laser-induced cavitation bubbles at moderate stand-off distances of $0.4\leqslant \gamma \leqslant 2.2$, namely bipolar, monopolar, annular, solar-halo and central. Among them, the bipolar and monopolar patterns exhibit the most severe cavitation erosion when the toroidal bubbles undergo asymmetrical collapse along the circumferential direction during the second cycle. Shadowgraphy visualization revealed that asymmetrical collapse caused shockwave focusing through head-on collision and oblique superposition of wavefronts. This led to the variations in toroidal bubble radii and the positions of maximum erosion depth not matching at certain stand-off distances. Both initial plasma asymmetry and bubble–wall stand-off distance were critical in determining circumferential asymmetrical collapse behaviours. At large initial aspect ratios, the elliptical jet tips form during the contraction process, resulting in the toroidal bubble collapsing from regions with smaller curvature radii, ultimately converging to the colliding point along the circumferential direction. Our three-dimensional simulations using OpenFOAM successfully reproduce the key features of circumferentially asymmetrical bubble collapse. This study provides new insights into the non-spherical near-wall bubble collapse dynamics and provides a foundation for developing predictive models for cavitation erosion.
Existing evidence on the association between combined lifestyle and depressive symptoms is limited to the general population and is lacking in individuals with subthreshold depression, a high-risk group for depressive disorders. Furthermore, it remains unclear whether an overall healthy lifestyle can mitigate the association between childhood trauma (CT) and depressive symptoms, even in the general population. We aimed to explore the associations of combined lifestyle, and its interaction with CT, with depressive symptoms and their subtypes (i.e. cognitive-affective and somatic symptoms) among adults with subthreshold depression.
Methods
This dynamic cohort was initiated in Shenzhen, China in 2019, including adults aged 18–65 years with the Patient Health Questionnaire-9 (PHQ-9) score of ≥ 5 but not diagnosed with depressive disorders at baseline. CT (present or absent) was assessed with the Childhood Trauma Questionnaire-Short Form. Combined lifestyle, including no current drinking, no current smoking, regular physical exercise, optimal sleep duration and no obesity, was categorized into 0–2, 3 and 4–5 healthy lifestyles. Depressive symptoms were assessed using the PHQ-9 during follow-up. This cohort was followed every 6 months, and as of March 2023, had been followed for 3.5 years.
Findings
This study included 2298 participants (mean [SD] age, 40.3 [11.1] years; 37.7% male). After fully adjusting for confounders, compared with 0–2 healthy lifestyles, 3 (β coefficient, −0.619 [95% CI, −0.943, −0.294]) and 4–5 (β coefficient, −0.986 [95% CI, −1.302, −0.671]) healthy lifestyles were associated with milder depressive symptoms during follow-up. There exists a significant synergistic interaction between a healthy lifestyle and the absence of CT. The CT-stratified analysis showed that compared with 0–2 healthy lifestyles, 3 healthy lifestyles were associated with milder depressive symptoms in participants with CT, but not in those without CT, and 4–5 healthy lifestyles were associated with milder depressive symptoms in both participants with and without CT, with a stronger association in those with CT. The lifestyle-stratified analysis showed that CT was associated with more severe depressive symptoms in participants with 0–2 healthy lifestyles, but not in those with 3 or 4–5 healthy lifestyles. Cognitive-affective and somatic symptoms showed similar results.
Conclusions
In this 3.5-year longitudinal study of adults with subthreshold depression, an overall healthy lifestyle was associated with subsequent milder depressive symptoms and their subtypes, with a stronger association in adults with CT than those without CT. Moreover, an overall healthy lifestyle mitigated the association of CT with depressive symptoms and their subtypes.
This study investigated the factors influencing the mental health of rural doctors in Hebei Province, to provide a basis for improving the mental health of rural doctors and enhancing the level of primary health care.
Background:
The aim of this study was to understand the mental health of rural doctors in Hebei Province, identify the factors that influence it, and propose ways to improve their psychological status and the level of medical service of rural doctors.
Methods:
Rural doctors from 11 cities in Hebei Province were randomly selected, and their basic characteristics and mental health status were surveyed via a structured questionnaire and the Symptom Checklist-90 (SCL-90). The differences between the SCL-90 scores of rural doctors in Hebei Province and the Chinese population norm, as well as the proportion of doctors with mental health problems, were compared. Logistic regression was used to analyse the factors that affect the mental health of rural doctors.
Results:
A total of 2593 valid questionnaires were received. The results of the study revealed several findings: the younger the rural doctors, the greater the incidence of mental health problems (OR = 0.792); female rural doctors were more likely to experience mental health issues than their male counterparts (OR = 0.789); rural doctors with disabilities and chronic diseases faced a significantly greater risk of mental health problems compared to healthy rural doctors (OR = 2.268); rural doctors with longer working hours have a greater incidence of mental health problems; and rural doctors with higher education backgrounds have a higher prevalence of somatization (OR = 1.203).
Conclusion:
Rural doctors who are younger, male, have been in medical service longer, have a chronic illness or disability, and have a high degree of education are at greater risk of developing mental health problems. Attention should be given to the mental health of the rural doctor population to improve primary health care services.
Entangled vortex filaments are essential to turbulence, serving as coherent structures that govern nonlinear fluid dynamics and support the reconstruction of fluid fields to reveal statistical properties. This study introduces a quantum implicit representation of vortex filaments in turbulence, employing a levelset method that models the filaments as the intersection of the real and imaginary zero iso-surfaces of a complex scalar field. Describing the fluid field via the scalar field offers distinct advantages in capturing complex structures, topological properties and fluid dynamics, while opening new avenues for innovative solutions through quantum computing platforms. The representation is reformulated into an eigenvalue problem for Hermitian matrices, enabling the conversion of velocity fields into complex scalar fields that embed the vortex filaments. The resulting optimisation is addressed using a variational quantum eigensolver, with Pauli operator truncation and deep learning techniques applied to improve efficiency and reduce noise. The proposed quantum framework achieves a near-linear time complexity and a exponential storage reduction while maintaining a balance of accuracy, robustness and versatility, presenting a promising tool for turbulence analysis, vortex dynamics research, and machine learning dataset generation.
The extracellular matrices, such as the haemolymph, in insects are at the centre of most physiological processes and are protected from oxidative stress by the extracellular antioxidant enzymes. In this study, we identified two secreted superoxide dismutase genes (PxSOD3 and PxSOD5) and investigated the oxidative stress induced by chlorpyrifos (CPF) in the aquatic insect Protohermes xanthodes (Megaloptera: Corydalidae). PxSOD3 and PxSOD5 contain the signal peptides at the N-terminus. Structure analysis revealed that PxSOD3 and PxSOD5 contain the conserved CuZn-SOD domain, which is mainly composed of β-sheets and has conserved copper and zinc binding sites. Both PxSOD3 and PxSOD5 are predicted to be soluble proteins located in the extracellular space. After exposure to different concentrations of sublethal CPF, MDA content in P. xanthodes larvae were increased in a dose-dependent manner; SOD and CAT activities were also higher in CPF-treated groups than that in the no CPF control, indicating that sublethal CPF induces oxidative stress in P. xanthodes larvae. Furthermore, PxSOD3 and PxSOD5 expression levels and haemolymph SOD activity in the larvae were downregulated by sublethal CPF at different concentrations. Our results suggest that the PxSOD3 and PxSOD5 are putative extracellular antioxidant enzymes that may play a role in maintaining the oxidative balance in the extracellular space. Sublethal CPF may induce oxidative stress in the extracellular space of P. xanthodes by reducing the gene expression and catalytic activity of extracellular SODs.
Ultra-thin liquid sheets generated by impinging two liquid jets are crucial high-repetition-rate targets for laser ion acceleration and ultra-fast physics, and serve widely as barrier-free samples for structural biochemistry. The impact of liquid viscosity on sheet thickness should be comprehended fully to exploit its potential. Here, we demonstrate experimentally that viscosity significantly influences thickness distribution, while surface tension primarily governs shape. We propose a thickness model based on momentum exchange and mass transport within the radial flow, which agrees well with the experiments. These results provide deeper insights into the behaviour of liquid sheets and enable accurate thickness control for various applications, including atomization nozzles and laser-driven particle sources.
This study utilises large-eddy simulation with the actuator line model to examine the effects of the tip speed ratio (TSR) on the wake-meandering characteristics of a wind turbine in uniform and turbulent inflows. It is shown that as the TSR grows, the onset position of the wake meandering moves closer to the rotor, and the magnitude of wake oscillation is stronger. This aligns with previous work showing that a higher TSR can accelerate the instability and breakdown of tip vortices. Without a nacelle, the Strouhal number of the wake meandering is found to be independent of the TSR under both the uniform and turbulent inflows. However, with a relatively large nacelle, the Strouhal number first increases and then decreases with TSR. Therefore, the current discovery elucidates the crucial role of the nacelle and clarifies the origin of the TSR dependence of the Strouhal number in wake meandering. In addition, the characteristic frequency of the wake meandering under the turbulent inflow is much smaller than that under the uniform inflow, because of the significant influence of the freestream turbulence. Furthermore, the proper orthogonal decomposition (POD) and spectral POD (SPOD) methods are employed to study the spatiotemporal characteristics of the meandering wake and its TSR dependence. It is found that the tip and root vortices are the prominent wake structures under the uniform inflow, whereas more complex multiscale structures from the interaction between the freestream turbulence and tip/root vortices exist under the turbulent inflow. Moreover, an amplitude modulation phenomenon of the POD time coefficients at the optimal TSR is observed in the uniform inflow case. Finally, a reduced-order model is constructed for predicting the wake dynamics by combining the SPOD and the ‘sparse identification of nonlinear dynamics’ algorithm with high accuracy and interpretability.
Germplasm resources are the foundation for improving crop varieties and a strategic asset for global food security. They also advance plant breeding, agricultural biotechnology and the production of essential agricultural goods. To assess the distribution, diversity and conservation status of food crop germplasm in the Hainan Province, China, we conducted a detailed survey of the Hainan Island. Between 2017 and 2022, we collected 330 food crop germplasm resources, encompassing 16 cereal crops, including rice, maize, sweet potato. The collected germplasm resources exhibited traits of high resistance to both biotic and abiotic stresses, including common diseases and drought stress, as well as superior quality and adaptability to poor soil conditions such as sandy land. However, challenges such as low productivity and hybrid degradation were identified. These resources were primarily found in Haikou City, Baisha County, Danzhou City, Wuzhishan City and Sanya City. Additionally, we collected several ancient local varieties and endangered germplasm resources such as ‘Jiezi rice’ and ‘Wuzhishan maize’. This study serves as a reference for the conservation, development and utilization of local food crop germplasm resources in Hainan Province and lays the foundation for breeding and developing new varieties.
This paper presents a theoretical model for the electro-osmotic flow (EOF) of semi-dilute polyelectrolyte (PE) solutions in nanochannels. We use mean-field theories to describe the properties of electric double layer and viscosity of PE solutions that are prerequisites for constructing the EOF model. The EOF model is validated via a good match to the existing experimental results. Based on the validated EOF model, we conduct a comprehensive analysis of EOF of semi-dilute PE solutions in nanochannels. First, we observe considerable EOF of PE solutions in the uncharged nanochannels, which is in stark contrast to EOF of simple electrolyte solutions. The analyses show that the EOF of PE solutions in uncharged nanochannels is triggered by the external electric field acting on the near-wall non-electroneutral regions resulting from the confinement-induced inhomogeneous distribution of PE monomers. Although the solutions are electroneutral as a whole, the presence of local non-electroneutral regions and the mismatch between non-electroneutral regions and high-viscosity regions lead to the net EOF in uncharged nanochannels. Furthermore, we reveal that the EOF mobility $\mu _{{eof}}$ in uncharged nanochannels exhibits a scaling law $\mu _{{eof}} \propto a^{-0.44}$ (wherein $a$ denotes monomer Kuhn length) and is inversely proportional to the PE chain length, while it decreases nonlinearly with the charge fraction of the PE chains. Moreover, the EOF mobility reaches its maximum at specific bulk monomer concentration, and increases with the nanochannel height before converging to that under no confinement. Second, we analyse the EOF of PE solutions in nanochannels with various wall effects, such as surface charge density, slip length and adsorption length. When the surface charge is absent, the adsorption length significantly influences the direction and magnitude of the EOF, whereas the slip length has no effect. When the wall becomes increasingly charged, the influence of adsorption length on EOF gradually diminishes, while the importance of the slip length progressively intensifies and the EOF is highly influenced by the co-action of various wall effects in a complicated manner. When the surface wall is oppositely charged to polymer monomers, the EOF mobility varies nonlinearly with the surface charge density, while a zero net flow of EOF followed by a direction reversal is discovered when the wall is likely charged to polymer monomers.
The impinging–freezing of supercooled water droplets (SLDs) is the root cause of aircraft icing. This work presented an experimental investigation of a millimeter-sized supercooled droplet (−10 $^\circ {\rm{C}}$) impact onto cold surfaces. For the majority of the current research on freezing behaviour, the quantitative analysis of impingement contributions was neglected. The present study established prediction models for the frozen area ratio, initial freezing height and solidification time by changing Weber number and Stefan number. The results showed that with the decrease in surface temperatures, the maximum spreading factor and the peak height factor were unchanged; however, the receding velocity of the liquid film reduced. Besides, regardless of the three freezing modes (quasi-static, instantaneous and delayed), the frozen area ratio consistently increased with decreasing Weber number. For the Stefan number exceeded 0.12, the frozen area ratio increased with decreasing surface temperature; otherwise, it was independent of the surface temperature. In addition, the initial height of asymmetrical frozen droplets was characterised using the ‘two-ellipse’ method, revealing an inverse proportionality to the square root of the frozen area ratio. Furthermore, the solidification time of the hemisphere and pancake frozen droplets shortened with the decrease in the initial height and surface temperature. This fundamental study provides valuable insights for understanding aircraft icing and optimising anti-icing systems.
Audiovisual temporal integration ability, reflected by the size of the temporal binding window (TBW), plays an important role in reading. The audiovisual TBW is not fixed, but dynamically changes during the integration process, this is referred to as rapid temporal recalibration. To investigate the rapid audiovisual temporal recalibration ability across age and its correlation with reading, the present study conducted simultaneity judgment (the index includes ΔPSS and ΔTBW) tasks involving speech (Experiment 1; children: Mage = 10.70, adults: Mage = 24.52) and non-speech (Experiment 2; children: Mage = 10.19, adults: Mage = 24.26) audiovisual stimuli in native Mandarin-Chinese-speaking child and adult groups (n = 36 in each group). Results showed that children’s ΔPSS and ΔTBW for speech stimuli were comparable to those of adults. However, when examining trial-by-trial changes in TBW during the integration process, a gap between children and adults was evident. Besides, for non-speech stimuli, children significantly differed from adults in both ΔPSS indicators and the integration process. Moreover, for both children and adults, the correlation and regression analysis showed that the rapid audiovisual temporal recalibration ability of both speech and non-speech stimuli explained reading fluency uniquely after controlling TBW, age, and gender.