We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Eotetranychus kankitus is an important pest on several agricultural crops, and its resistance to pesticides has promoted the exploration of biological control strategies. Beauveria bassiana and Neoseiulus barkeri have been identified as potential agents for suppressing spider mites. This study aimed to investigate the pathogenicity of B. bassiana on E. kankitus and its compatibility with N. barkeri. Results showed that among the five tested strains of B. bassiana, Bb025 exhibited the highest level of pathogenicity on E. kankitus. Higher application rates (1 × 108 conidia/mL) of Bb025 led to a higher mortality rate of E. kankitus (90.402%), but also resulted in a 15.036% mortality of N. barkeri. Furthermore, preference response tests indicated that both E. kankitus and N. barkeri actively avoided plants sprayed with Bb025 compared to the control group that was sprayed with Tween-80. In a no-choice test, we observed that N. barkeri actively attacked Bb025-treated E. kankitus with no adverse effect on its predatory capacities. Furthermore, N. barkeri laid more eggs when fed on Bb025-treated E. kankitus compared to Tween-80-treated E. kankitus, but the subsequent generation of surviving individuals fed on Bb025-treated E. kankitus was reduced. These findings demonstrate that the Bb025 strain of B. bassiana is highly virulent against E. kankitus while causing less harm to N. barkeri. Consequently, a promising strategy for controlling E. kankitus could involve the sequential utilisation of Bb025 and N. barkeri at appropriate intervals.
The paper presents a novel control method aimed at enhancing the trajectory tracking accuracy of two-link mechanical systems, particularly nonlinear systems that incorporate uncertainties such as time-varying parameters and external disturbances. Leveraging the Udwadia–Kalaba equation, the algorithm employs the desired system trajectory as a servo constraint. First, the system’s constraints to construct its dynamic equation and apply generalized constraints from the constraint equation to an unconstrained system. Second, we design a robust approximate constraint tracking controller for manipulator control and establish its stability using Lyapunov’s law. Finally, we numerically simulate and experimentally validate the controller on a collaborative platform using model-based design methods.
Glaciers play a crucial role in the Asian Water Tower, underscoring the necessity of accurately assessing their mass balance and ice volume to evaluate their significance as sustainable freshwater resources. In this study, we analyzed ground-penetrating radar (GPR) measurements from a 2020 survey of the Xiao Dongkemadi Glacier (XDG) to determine ice thickness, and we extended the glacier’s volume-change record to 2020 by employing multi-source remote-sensing data. Our findings show that the GPR-derived mean ice thickness of XDG in 2020 was 54.78 ± 3.69 m, corresponding to an ice volume of 0.0811 ± 0.0056 km3. From 1969 to 2020, the geodetic mass balance was −0.19 ± 0.02 m w.e. a−1, and the glacier experienced area and ice volume losses of 16.38 ± 4.66% and 31.01 ± 4.59%, respectively. The long-term mass-balance reconstruction reveals weak fluctuations occurred from 1967 to 1993 and that overall mass losses have occurred since 1994. This ongoing shrinkage and ice loss are mainly associated with the temperature increases in the warm season since the 1960s. If the climate trend across the central Tibetan Plateau follows to the SSP585 scenario, then XDG is at risk of disappearing by the end of the century.
The emergency response capacity of nurses is quite important during the COVID-19 epidemic. This study aimed to determine the relationship of resilience with emergency response capacity and occupational stresses during COVID-19 re-outbreak.
Methods
This is a cross-sectional study that involved 241 new nurses. Questionnaires (including demographic characteristics and self-report questionnaires) were sent via QR code and used to conduct an online survey of new nurses. Resilience, emergency response capacity, and occupational stressors were measured using questionnaires.
Results
Mean resilience score was 62.68 ± 14.04, which corresponds to a moderate level. Age, marital status, and work experience were significantly associated with resilience (P = 0.037, P = 0.046, P = 0.011) and emergency response capacity (P = 0.018, P = 0.045, P < 0.000). Total score and 3 dimensions of resilience were positively correlated with emergency response competency questionnaire and 3 dimensions (P < 0.01). Total scores of the nurse job stress scale and patient care dimension were negatively correlated with resilience scores (P < 0.05). Resilience played a partial mediating role in occupational stressors and emergency response capacity, and mediating effect accounted for 45.79% of the total effect.
Conclusions
The nursing superintendent must pay more attention to the resiliency of new nurses to reduce occupational stressors and improve emergency response capacity while helping new nurses cope with COVID-19 re-outbreak.
Understanding the genetic basis of porcine mental health (PMH)-related traits in intensive pig farming systems may promote genetic improvement animal welfare enhancement. However, investigations on this topic have been limited to a retrospective focus, and phenotypes have been difficult to elucidate due to an unknown genetic basis. Intensively farmed pigs, such as those of the Duroc, Landrace, and Yorkshire breeds, have undergone prolonged selection pressure in intensive farming systems. This has potentially subjected genes related to mental health in these pigs to positive selection. To identify genes undergoing positive selection under intensive farming conditions, we employed multiple selection signature detection approaches. Specifically, we integrated disease gene annotations from three human gene–disease association databases (Disease, DisGeNET, and MalaCards) to pinpoint genes potentially associated with pig mental health, revealing a total of 254 candidate genes related to PMH. In-depth functional analyses revealed that candidate PMH genes were significantly overrepresented in signaling-related pathways (e.g., the dopaminergic synapse, neuroactive ligand‒receptor interaction, and calcium signaling pathways) or Gene Ontology terms (e.g., dendritic tree and synapse). These candidate PMH genes were expressed at high levels in the porcine brain regions such as the hippocampus, amygdala, and hypothalamus, and the cell type in which they were significantly enriched was neurons in the hippocampus. Moreover, they potentially affect pork meat quality traits. Our findings make a significant contribution to elucidating the genetic basis of PMH, facilitating genetic improvements for the welfare of pigs and establishing pigs as valuable animal models for gaining insights into human psychiatric disorders.
Understanding settling motion of coral grains is important in terms of protection of coral reef systems and resotoration of the associated ecosystems. In this paper, a series of laboratory experiments was conducted to investigate the settling motion, using optical microscopy to measure shape parameters of coral grains and the particle-filtering-based object tracking to reconstruct the three-dimensional trajectory. Three characteristic descent regimes, namely, tumbling, chaotic and fluttering, are classified based on the three-dimensional trajectory, the spiral radius variation and the velocity spectrum. It is demonstrated that if one randomly picks up one coral grain, then the probabilities of occurrence of the three regimes are approximately $26\,\%$, $42\,\%$ and $32\,\%$, respectively. We have shown that first, the dimensionless settling velocity generally increases with the non-dimensional diameter and Corey shape factor and second, the drag coefficient generally decreases with the Reynolds number and Corey shape factor. Based on this, the applicability of existing models on predicting settling velocity and drag coefficient for coral grains is demonstrated further. Finally, we have proposed extended models for predicting the settling velocity. This study contributes to better understanding of settling motion and improves our predictive capacity of settling velocity for coral grains with complex geometry.
Research findings based on the data of current automatic identification systems (AISs) can only be applied to some parts of navigation research owing to their insufficient mining depth. Previously, route planning research has been based on the waypoint and corresponding optimised algorithm without considering the actual navigation situation and sailing habits. The planned route considerably differs from the actual sailing route, and the application result is undesirable. A novel solution to support the route planning problem has been introduced owing to the large accumulation of AIS big data. In this study, the ship navigable route framework (SNRF) which is reflected by real data via mining AIS big data serves as the basic network for the planned maritime route. This study uses the concept of manifold distance based on AIS big data to build a maritime SNRF through high-density searching. It can provide basic theoretical support for actual navigation distance calculation, route planning and route accessibility inspection in the future.
Achieving optimal nutritional status in patients with penetrating Crohn’s disease is crucial in preparing for surgical resection. However, there is a dearth of literature comparing the efficacy of total parenteral nutrition (TPN) v. exclusive enteral nutrition (EEN) in optimising postoperative outcomes. Hence, we conducted a case-matched study to assess the impact of preoperative EEN v. TPN on the incidence of postoperative adverse outcomes, encompassing overall postoperative morbidity and stoma formation, among penetrating Crohn’s disease patients undergoing bowel surgery. From 1 December 2012 to 1 December 2021, a retrospective study was conducted at a tertiary centre to enrol consecutive patients with penetrating Crohn’s disease who underwent surgical resection. Propensity score matching was utilised to compare the incidence of postoperative adverse outcomes. Furthermore, univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with adverse outcomes. The study included 510 patients meeting the criteria. Among them, 101 patients in the TPN group showed significant improvements in laboratory indicators at the time of surgery compared with pre-optimisation levels. After matching, TPN increased the occurrence of postoperative adverse outcomes (92·2 % v. 64·1 %, P = 0·001) when compared with the EEN group. In the multivariate analysis, TPN showed a significantly higher OR for adverse outcomes than EEN (OR = 4·241; 95 % CI 1·567–11·478; P = 0·004). The study revealed that penetrating Crohn’s disease patients who were able to fulfil their nutritional requirements through EEN exhibited superior nutritional and surgical outcomes in comparison with those who received TPN.
We report an experimental study about the effect of an obstructed centre on heat transport and flow reversal by inserting an adiabatic cylinder at the centre of a quasi-two-dimensional Rayleigh–Bénard convection cell. The experiments are carried out in a Rayleigh number ($Ra$) range of $2\times 10^7 \leq Ra \leq 2\times 10^9$ and at a Prandtl number ($Pr$) of $5.7$. It is found that for low $Ra$, the obstructed centre leads to a heat transfer enhancement of up to 21 $\%$, while as $Ra$ increases, the magnitude of the heat transfer enhancement decreases and the heat transfer efficiency ($Nu$) eventually converges to that of the unobstructed normal cell. Particle image velocimetry measurements show that the heat transfer enhancement originates from the change in flow topology due to the presence of the cylindrical obstruction. In the low-$Ra$ regime the presence of the obstruction promotes the transition of the flow topology from the four-roll state to the abnormal single-roll state then to the normal single-roll state with increasing obstruction size. While in the high-$Ra$ regime, the flow is always in the single-roll state regardless of the obstruction size, although the flow becomes more coherent with the size of the obstruction. We also found that in the presence of the cylindrical obstruction, the stability of the corner vortices is significantly reduced, leading to a large reduction in the frequency of flow reversals.
This paper proposes a robust control approach to achieve high-precision trajectory tracking for permanent magnet linear motor (PMLM) system containing uncertainties by describing the dynamic model of PMLM based on the Udwadia-Kalaba equation combined with constraint-following method. First, the system of PMLM is described as a constraint-following system by adding the generalized constraint force to the unconstrained Udwadia-Kalaba equation of PMLM system. Second, the robust constraint-following controller is designed based on the proposed model after uncertainty analysis. Moreover, the proposed controller is verified to guarantee deterministic performance for uncertain systems: uniformly bounded and uniformly ultimately bounded. Third, the numerical simulation and experimental validation demonstrate the effectiveness of proposed controller. Finally, the design approach of constraint-following can be applied to other systems with uncertainties.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.
The rising antimicrobial resistance (AMR) and the difficulty in developing new antibiotics are causing a global public health problem. This analysis aims to better understand the clinical and economic value of new antibiotic treatment strategies, in order to inform clinical and antibiotic formulary decisions.
Methods
We applied a published and validated dynamic disease transmission and cost-effectiveness model of AMR with a 10-year time horizon and discount rate of five percent to evaluate the clinical and economic outcomes of introducing a new antibiotic, namely, Ceftazidime/Avibactam (CAZ-AVI) for treating AMR infections in Zhejiang Province, China. Together with piperacillin-tazobactam (pip/taz) and meropenem, we explored the impact of six treatment strategies across three common infections (complicated intra-abdominal infection (cIAI), hospital-acquired/ventilator-associated pneumonia (HAP/VAP) and infections with limited treatment options (LTO)), and pathogens (Escherichia coli, Klebsiella spp., and Pseudomonas aeruginosa). These treatment strategies included (i) current treatment strategy (pip/taz and meropenem, no CAZ-AVI), (ii) CAZ-AVI at the third line, (iii) CAZ-AVI at the second line, (iv) CAZ-AVI at the first line, (v) first line diversity (i.e., equal pip/taz and CAZ-AVI at the first line; meropenem at the last line) and (vi) all-lines diversity (pip/taz, meropenem and CAZ-AVI used randomly and only once). The data with a total of 10,905 patients were collected from a tier-3 hospital from 2018 to 2021.
Results
Under the current treatment strategy, the hospital length of stay (LOS) and costs over ten years were estimated to be 1,588,763 days and CNY3,898,198,802 (USD559,781,348), respectively, associated with 142,999 quality-adjusted life-years (QALYs) lost, resulting in the resistance of pip/taz and meropenem being 42.0 percent and 49.9 percent respectively. In contrast, the other five treatment strategies all have shown improved outcomes, among which the “all-lines diversity” carried the greatest benefit, saving CNY1,646.04 (USD236.37) for each additional QALY gained, with the net monetary benefit being CNY24,727,102,215 (USD3,550,811,878).
Conclusions
Introducing CAZ-AVI had positive impact on clinical and economic outcomes for treating AMR, and diversifying early the antibiotics might yield the best benefits.
This study examined how the multidimensional negative coronavirus disease (COVID-19) impacts contextualized the age differences in psychological distress following exposures to tornadoes and the COVID-19 pandemic.
Methods:
Data were from a 2-wave panel study conducted at T1 (October 2020–August 2021) and T2 (May–August 2022). Latent class analysis was conducted to explore the patterns of negative COVID-19 impacts based on a sample of 1134 at T1. Negative binomial regressions were performed to examine the age differences in psychological distress at T2, based on the working sample (N = 554), as well as the moderating effect of identified class membership, with baseline psychological distress controlled.
Results:
Three latent classes were identified: class 1 “low overall impacts,” class 2 “moderate overall impacts with high emotional distress,” and class 3 “severe overall impacts.” Individuals ages 65 and over reported lower psychological distress at T2 relative to those ages 18–34 and 35–49. However, compared to people ages 18–34, 35–49, and 50–64, those ages 65 and over reported the greatest increases in T2 psychological distress if they had experienced moderate or severe overall COVID-19 impacts at T1.
Conclusion:
There is a pressing need for mental health interventions that are tailored to multi-disaster scenarios and age-related differences in long-term disaster recovery.
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule–kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule–kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
Obsessive–compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD.
Methods
Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors.
Results
LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects.
Conclusions
We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.
The discharged capillary plasma channel has been extensively studied as a high-gradient particle acceleration and transmission medium. A novel measurement method of plasma channel density profiles has been employed, where the role of plasma channels guiding the advantages of lasers has shown strong appeal. Here, we have studied the high-order transverse plasma density profile distribution using a channel-guided laser, and made detailed measurements of its evolution under various parameters. The paraxial wave equation in a plasma channel with high-order density profile components is analyzed, and the approximate propagation process based on the Gaussian profile laser is obtained on this basis, which agrees well with the simulation under phase conditions. In the experiments, by measuring the integrated transverse laser intensities at the outlet of the channels, the radial quartic density profiles of the plasma channels have been obtained. By precisely synchronizing the detection laser pulses and the plasma channels at various moments, the reconstructed density profile shows an evolution from the radial quartic profile to the quasi-parabolic profile, and the high-order component is indicated as an exponential decline tendency over time. Factors affecting the evolution rate were investigated by varying the incentive source and capillary parameters. It can be found that the discharge voltages and currents are positive factors quickening the evolution, while the electron-ion heating, capillary radii and pressures are negative ones. One plausible explanation is that quartic profile contributions may be linked to plasma heating. This work helps one to understand the mechanisms of the formation, the evolutions of the guiding channel electron-density profiles and their dependences on the external controllable parameters. It provides support and reflection for physical research on discharged capillary plasma and optimizing plasma channels in various applications.
A novel data-driven modal analysis method, reduced-order variational mode decomposition (RVMD), is proposed, inspired by the Hilbert–Huang transform and variational mode decomposition (VMD), to resolve transient or statistically non-stationary flow dynamics. First, the form of RVMD modes (referred to as an ‘elementary low-order dynamic process’, ELD) is constructed by combining low-order representation and the idea of intrinsic mode function, which enables the computed modes to characterize the non-stationary properties of space–time fluid flows. Then, the RVMD algorithm is designed based on VMD to achieve a low-redundant adaptive extraction of ELDs in flow data, with the modes computed by solving an elaborate optimization problem. Further, a combination of RVMD and Hilbert spectral analysis leads to a modal-based time-frequency analysis framework in the Hilbert view, providing a potentially powerful tool to discover, quantify and analyse the transient and non-stationary dynamics in complex flow problems. To provide a comprehensive evaluation, the computational cost and parameter dependence of RVMD are discussed, as well as the relations between RVMD and some classic modal decomposition methods. Finally, the virtues and utility of RVMD and the modal-based time-frequency analysis framework are well demonstrated via two canonical problems: the transient cylinder wake and the planar supersonic screeching jet.
Two thrips, Megalurothrips usitatus (Bagnall) and Frankliniella intonsa (Trybom) are major pests of cowpea in South China. To realistically compare the growth, development and reproductive characteristics of these two thrips species, we compared their age-stage, two-sex life tables on cowpea pods under summer and winter natural environmental regimes. The results showed that the total preadult period of M. usitatus was 8.09 days, which was significantly longer than that of F. intonsa (7.06 days), while the adult female longevity of M. usitatus (21.14 days) was significantly shorter than that of F. intonsa (25.77 days). Significant differences were showed in male adult longevity (10.68 days for F. intonsa and 16.95 days for M. usitatus) and the female ratio of offspring (0.67 for F. intonsa and 0.51 for M. usitatus), and the total preadult period of M. usitatus (16.20 days) was significantly longer than that of F. intonsa (13.66 days) in the winter regime. The net reproductive rate (summer: R0 = 85.62, winter: R0 = 105.22), intrinsic rate of increase (summer: r = 0.3020 day−1, winter: r = 0.2115 day−1), finite rate of increase (summer: λ = 1.3526 day−1, winter: λ = 1.2356 day−1) and gross reproduction rate (summer: GRR = 139.34, winter: GRR = 159.88) of F. intonsa were higher than those of M. usitatus (summer: R0 = 82.91, r = 0.2741, λ = 1.3155, GRR = 135.71; winter: R0 = 80.62, r = 0.1672, λ = 1.1820, GRR = 131.26), and the mean generation times (summer: T = 14.73 days, winter: T = 22.01 days) of F. intonsa were significantly shorter than those of M. usitatus (summer: T = 16.11 days, winter: T = 26.25 days). These results may contribute to a better understanding of the bioecology of different thrips species, especially the interspecific competition between two economically important cowpea thrips with the same ecological niche in a changing environment.
Childhood is a critical period for muscle accumulation. Studies in elders have reported that antioxidant vitamins could improve muscle health. However, limited studies have assessed such associations in children. This study included 243 boys and 183 girls. A seventy-nine-item FFQ was used to investigate dietary nutrients intake. Plasma levels of retinol and α-tocopherol were measured using high-performance liquid chromatography with MS. Dual X-ray absorptiometry was used to assess appendicular skeletal muscle mass (ASM) and total body fat. The ASM index (ASMI) and ASMI Z-score were then calculated. Hand grip strength was measured using a Jamar® Plus+ Hand Dynamometer. Fully adjusted multiple linear regression models showed that for each unit increase in plasma retinol content, ASM, ASMI, left HGS and ASMI Z-score increased by 2·43 × 10−3 kg, 1·33 × 10−3 kg/m2, 3·72 × 10−3 kg and 2·45 × 10−3 in girls, respectively (P < 0·001–0·050). ANCOVA revealed a dose–response relationship between tertiles of plasma retinol level and muscle indicators (Ptrend: 0·001–0·007). The percentage differences between the top and bottom tertiles were 8·38 %, 6·26 %, 13·2 %, 12·1 % and 116 % for ASM, ASMI, left HGS, right HGS and ASMI Z-score in girls, respectively (Pdiff: 0·005–0·020). No such associations were observed in boys. Plasma α-tocopherol levels were not correlated with muscle indicators in either sex. In conclusion, high circulating retinol levels are positively associated with muscle mass and strength in school-age girls.