We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exposure to childhood trauma or adverse adulthood experiences (AAEs) may increase depression risk. However, the relationships between these factors and age of depression onset remain unclear.
Aims
We aimed to investigate the associations of childhood trauma and AAEs with depression risk across life stages, and their joint effects on lifetime depression risk.
Method
A total of 118 164 participants without prior depression from UK Biobank (UKB) were included. Adverse experiences during childhood and adulthood were assessed through the online mental health questionnaire in 2016, primarily including physical neglect, physical abuse, emotional neglect, emotional abuse and sexual abuse. Cox proportional hazard regression models were used to explore the independent and joint effects of childhood trauma and AAEs on the age of depression onset.
Results
In the multivariable-adjusted models, compared with low childhood trauma, high childhood trauma was associated with higher risk of depression occurring in early adulthood [hazard ratio 2.35, 95% CIs: 2.12–2.59] and middle adulthood (hazard ratio 1.86, 95% CIs: 1.67–2.07). Likewise, in comparison with lower levels of AAEs, higher levels were significantly associated with an elevated risk of depression during middle adulthood (hazard ratio 2.71, 95% CIs: 2.26–3.25). In joint analyses we found that, compared with individuals with low AAEs and low childhood trauma, those with low AAEs and high childhood trauma (hazard ratio 1.80, 95% CIs: 1.41–2.30) and those with high AAEs and low childhood trauma (hazard ratio 1.74, 95% CIs: 1.35–2.26) exhibited similarly significant effects on the risk of depression, suggesting that childhood trauma and AAEs had contributed equally to lifetime depression (P > 0.05).
Conclusions
Exposure to childhood trauma or AAEs presented a more detrimental effect on the early onset of depression compared with later stages throughout the lifespan. Our findings advise paying attention to traumatic events at any life stage, and the instigation of prompt intervention strategies following traumatic events, to minimise the risk of lifetime depression.
This study investigates the spatial distribution of inertial particles in turbulent Taylor–Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian–Lagrangian approach, with a fixed inner-wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number ($St$) varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer-wall region. Employing two-dimensional Voronoï analysis, we observe a pronounced particle clustering with increasing $St$, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of Johnson et al. (J. Fluid Mech., vol. 883, 2020, A27), to examine the particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration toward the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them toward the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared with the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications.
This paper is concerned with a predator–prey system with hunting cooperation and prey-taxis under homogeneous Neumann boundary conditions. We establish the existence of globally bounded solutions in two dimensions. In three or higher dimensions, the global boundedness of solutions is obtained for the small prey-tactic coefficient. By using hunting cooperation and prey species diffusion as bifurcation parameters, we conduct linear stability analysis and find that both hunting cooperation and prey species diffusion can drive the instability to induce Hopf, Turing and Turing–Hopf bifurcations in appropriate parameter regimes. It is also found that prey-taxis is a factor stabilizing the positive constant steady state. We use numerical simulations to illustrate various spatiotemporal patterns arising from the abovementioned bifurcations including spatially homogeneous and inhomogeneous time-periodic patterns, stationary spatial patterns and chaotic fluctuations.
The dynamic behaviour of helicopter during water impact, considering variations in initial downward velocity and pitching angle, have been investigated numerically and theoretically in the present study. The air-water two-phase flows are simulated by solving unsteady Reynolds-averaged Navier-Stokes equations enclosed by standard $k - \omega $ turbulence model. A treatment for computational domain in combination with a global dynamic mesh technique is applied to deal with the relative motion between the helicopter and water. Results indicate that the initial downward velocity of helicopter exhibits behaviour similar to that of a V-shaped body impacting on water, as does the initial pitching angle. To extend the theoretical approach for predicting the kinematic parameters during helicopter ditching, a shape factor capturing the combined effect of various attributes and an average deadrise angle for asymmetric wedges are also introduced.
Let X be a compact Kähler manifold, and let $L \rightarrow X$ be a holomorphic line bundle equipped with a singular metric h such that the curvature $\mathrm {i}\Theta _{L,h}\geqslant 0$ in the sense of currents. The main result of this paper is the vanishing of $H^n(X,\mathcal {O}(\Omega ^p_X\otimes L)\otimes \mathcal {I}(h))$ for $p\geqslant n-\operatorname {nd}(L,h)+1$, which generalizes Bogomolov’s vanishing theorem and Watanabe’s result.
The multi-colour complete light curves and low-resolution spectra of two short period eclipsing Am binaries V404 Aur and GW Gem are presented. The stellar atmospheric parameters of the primary stars were derived through the spectra fitting. The observed and TESS-based light curves of them were analysed by using the Wilson-Devinney code. The photometric solutions suggest that both V404 Aur and GW Gem are semi-detached systems with the secondary component filling its critical Roche Lobe, while the former should be a marginal contact binary. The $O-C$ analysis found that the period of V404 Aur is decreasing at a rate of $dP/dt=-1.06(\pm0.01)\times 10^{-7}\,\mathrm{d}\,\mathrm{ yr}^{-1}$, while the period of GW Gem is increasing at $dP/dt=+2.41(\pm0.01)\times 10^{-8} \mathrm{d}\,\mathrm{yr}^{-1}$. The period decrease of V404 Aur may mainly be caused by the combined effects of the angular momentum loss (AML) via an enhanced stellar wind of the more evolved secondary star and mass transfer between two components. The period increase of GW Gem supports the mass transfer from the secondary to the primary. Both targets may be in the broken contact stage predicted by the thermal relaxation oscillations theory and will eventually evolve to the contact stage. We have collected about 54 well-known eclipsing Am binaries with absolute parameters from the literature. The relations of these parameters are summarised. There are some components that have a higher degree of evolution. The majority of their hydrogen shell may have been stripped away and the stellar internal layer exposed. The accretion processes from such evolved components may be very important for the formation of Am peculiarity in binaries.
Computer-based interactive items have become prevalent in recent educational assessments. In such items, detailed human–computer interactive process, known as response process, is recorded in a log file. The recorded response processes provide great opportunities to understand individuals’ problem solving processes. However, difficulties exist in analyzing these data as they are high-dimensional sequences in a nonstandard format. This paper aims at extracting useful information from response processes. In particular, we consider an exploratory analysis that extracts latent variables from process data through a multidimensional scaling framework. A dissimilarity measure is described to quantify the discrepancy between two response processes. The proposed method is applied to both simulated data and real process data from 14 PSTRE items in PIAAC 2012. A prediction procedure is used to examine the information contained in the extracted latent variables. We find that the extracted latent variables preserve a substantial amount of information in the process and have reasonable interpretability. We also empirically prove that process data contains more information than classic binary item responses in terms of out-of-sample prediction of many variables.
Accurate assessment of a student’s ability is the key task of a test. Assessments based on final responses are the standard. As the infrastructure advances, substantially more information is observed. One of such instances is the process data that is collected by computer-based interactive items and contain a student’s detailed interactive processes. In this paper, we show both theoretically and with simulated and empirical data that appropriately including such information in the assessment will substantially improve relevant assessment precision.
Process data refer to data recorded in log files of computer-based items. These data, represented as timestamped action sequences, keep track of respondents’ response problem-solving behaviors. Process data analysis aims at enhancing educational assessment accuracy and serving other assessment purposes by utilizing the rich information contained in response processes. The R package ProcData presented in this article is designed to provide tools for inspecting, processing, and analyzing process data. We define an S3 class ‘proc’ for organizing process data and extend generic methods summary and print for ‘proc’. Feature extraction methods for process data are implemented in the package for compressing information in the irregular response processes into regular numeric vectors. ProcData also provides functions for making predictions from neural-network-based sequence models. In addition, a real dataset of response processes from the climate control item in the 2012 Programme for International Student Assessment is included in the package.
Rheumatoid arthritis (RA) is a prevalent autoimmune disease, and there is growing evidence suggesting a potential correlation between dietary factors and the pathogenesis of this condition. In order to investigate the causal relationship between diet and RA, we conducted a two-sample Mendelian randomisation (MR) analysis to examine the causal associations between twenty-two dietary factors and RA. Summary data from genome-wide association studies (GWAS) of RA were obtained from large GWAS meta-analyses. GWAS summary data for twenty-two dietary factors were obtained from UK Biobank. Random-effects inverse variance weighted was used as the primary method for assessing causality, and analyses of heterogeneity and horizontal pleiotropy were performed to ensure the accuracy of the results. Research indicates a negative genetic causal relationship between cereal intake (OR = 0·64, 95 % CI: 0·41, 0·99, P = 0·048) and oily fish intake (OR = 0·70, 95 % CI: 0·52, 0·95, P = 0·020) with the risk of RA. Other dietary factors were not causally related to RA. Sensitivity analysis shows that our results are reliable. This study provides genetic evidence suggesting that cereal intake and oily fish intake are protective factors for RA, indicating that RA patients and individuals at high risk should make appropriate dietary adjustments.
Evidence is largely limited regarding the extent to which abnormal behavioural profiles, including physical inactivity, sedentary behaviour and inadequate sleep duration, impact long-term health conditions in individuals with pre-existing depression.
Aims
To investigate the associations between accelerometer-derived daily movement behaviours and mortality in individuals with pre-existing depression.
Method
Between 2013 and 2015, a total of 10 914 individuals with pre-existing depression were identified from the UK Biobank through multiple sources including self-reported symptoms, records of antidepressant usage and diagnostic recording based on the 10th Revision of the International Classification of Diseases (ICD-10) codes F32–F33. These participants were subsequently followed up until 2021. Wrist-worn accelerometers were used for objective measurement of sleep duration, sedentary behaviour, moderate-to-vigorous physical activity (MVPA) and light physical activity (LPA) over a span of seven consecutive days.
Results
During a median follow-up of 6.9 years, 434 deaths occurred among individuals with pre-existing depression. We observed a U-shaped association between sleep duration and mortality in individuals with pre-existing depression, with the lowest risk occurring at approximately 9 h/day. Both MVPA and LPA exhibited an L-shaped pattern in relation to mortality, indicating that engaging in higher levels of physical activity was associated with lower risk of mortality in individuals with pre-existing depression, but the beneficial effect reached a plateau after 50 min/day for MVPA and 350 min/day for LPA. We found a positive association between sedentary time and mortality, and the risk apparently increased above 8 h/day. Moreover, substituting 1 hour/day of sedentary time with LPA or MVPA was significantly associated with a 12% (hazard ratio: 0.88, 95% CI: 0.83–0.94) and 24% (hazard ratio: 0.76, 95% CI: 0.61–0.94) lower risk of mortality, respectively.
Conclusions
Our study found the beneficial effect of adequate sleep duration, high levels of physical activity and short sedentary time on risk of mortality among individuals with pre-existing depression.
We consider linear-fractional branching processes (one-type and two-type) with immigration in varying environments. For $n\ge0$, let $Z_n$ count the number of individuals of the nth generation, which excludes the immigrant who enters the system at time n. We call n a regeneration time if $Z_n=0$. For both the one-type and two-type cases, we give criteria for the finiteness or infiniteness of the number of regeneration times. We then construct some concrete examples to exhibit the strange phenomena caused by the so-called varying environments. For example, it may happen that the process is extinct, but there are only finitely many regeneration times. We also study the asymptotics of the number of regeneration times of the model in the example.
The proton–boron ${}^{11}{\text{B}}\left( {p,\alpha } \right)2\alpha $ reaction (p-11B) is an interesting alternative to the D-T reaction ${\text{D}}\left( {{\text{T}},{\text{n}}} \right)\alpha $ for fusion energy, since the primary reaction channel is aneutronic and all reaction partners are stable isotopes. We measured the α production yield using protons in the 120–260 keV energy range impinging onto a hydrogen–boron-mixed target, and for the first time present experimental evidence of an increase of α-particle yield relative to a pure boron target. The measured enhancement factor is approximately 30%. The experiment results indicate a higher reactivity, and that may lower the condition for p-11B fusion ignition.
The spatio-temporal scales, as well as a comprehensive self-sustained mechanism of the reattachment unsteadiness in shock wave/boundary layer interaction, are investigated in this study. Direct numerical simulations reveal that the reattachment unsteadiness of a Mach 7.7 laminar inflow causes over $26\,\%$ variation in wall friction and up to $20\,\%$ fluctuation in heat flux at the reattachment of the separation bubble. A statistical approach, based on the local reattachment upstream movement, is proposed to identify the spanwise and temporal scales of reattachment unsteadiness. It is found that two different types, i.e. self-induced and random processes, dominate different regions of reattachment. A self-sustained mechanism is proposed to comprehend the reattachment unsteadiness in the self-induced region. The intrinsic instability of the separation bubble transports vorticity downstream, resulting in an inhomogeneous reattachment line, which gives rise to baroclinic production of quasi-streamwise vortices. The pairing of these vortices initiates high-speed streaks and shifts the reattachment line upstream. Ultimately, viscosity dissipates the vortices, triggering instability and a new cycle of reattachment unsteadiness. The temporal scale and maximum vorticity are estimated with the self-sustained mechanism via order-of-magnitude analysis of the enstrophy. The advection speed of friction, derived from the assumption of coherent structures advecting with a Blasius-type boundary layer, aligns with the numerical findings.
Recent studies of viscous dissipation mechanisms in impacting droplets have revealed distinct behaviours between the macroscale and nanoscale. However, the transition of these mechanisms from the macroscale to the nanoscale remains unexplored due to limited research at the microscale. This work addresses the gap using the many-body dissipative particle dynamics (MDPD) method. While the MDPD method omits specific atomic details, it retains crucial mesoscopic effects, making it suitable for investigating the impact dynamics at the microscale. Through the analysis of velocity contours within impacting droplets, the research identifies three primary contributors to viscous dissipation during spreading: boundary-layer viscous dissipation from shear flow; rim geometric head loss; and bulk viscous dissipation caused by droplet deformation. This prompts a re-evaluation of viscous dissipation mechanisms at both the macroscale and nanoscale. It reveals that the same three kinds of dissipation are present across all scales, differing only in their relative intensities at each scale. A model of the maximum spreading factor (βmax) incorporating all forms of viscous dissipation without adjustable parameters is developed to substantiate this insight. This model is validated against three distinct datasets representing the macroscale, microscale and nanoscale, encompassing a broad spectrum of Weber numbers, Ohnesorge numbers and contact angles. The satisfactory agreement between the model predictions and the data signifies a breakthrough in establishing a universal βmax model applicable across all scales. This model demonstrates the consistent nature of viscous dissipation mechanisms across different scales and underscores the importance of integrating microscale behaviours to understand macroscale and nanoscale phenomena.
Depression is highly prevalent in haemodialysis patients, and diet might play an important role. Therefore, we conducted this cross-sectional study to determine the association between dietary fatty acids (FA) consumption and the prevalence of depression in maintenance haemodialysis (MHD) patients. Dietary intake was assessed using a validated FFQ between December 2021 and January 2022. The daily intake of dietary FA was categorised into three groups, and the lowest tertile was used as the reference category. Depression was assessed using the Patient Health Questionnaire-9. Logistic regression and restricted cubic spline (RCS) models were applied to assess the relationship between dietary FA intake and the prevalence of depression. As a result, after adjustment for potential confounders, a higher intake of total FA [odds ratio (OR)T3 vs. T1 = 1·59, 95 % confidence interval (CI) = 1·04, 2·46] and saturated fatty acids (SFA) (ORT3 vs. T1 = 1·83, 95 % CI = 1·19, 2·84) was associated with a higher prevalence of depressive symptoms. Significant positive linear trends were also observed (P < 0·05) except for SFA intake. Similarly, the prevalence of depression in MHD patients increased by 20% (OR = 1.20, 95% CI = 1.01–1.43) for each standard deviation increment in SFA intake. RCS analysis indicated an inverse U-shaped correlation between SFA and depression (Pnonlinear > 0·05). Additionally, the sensitivity analysis produced similar results. Furthermore, no statistically significant association was observed in the subgroup analysis with significant interaction. In conclusion, higher total dietary FA and SFA were positively associated with depressive symptoms among MHD patients. These findings inform future research exploring potential mechanism underlying the association between dietary FA and depressive symptoms in MHD patients.
The asymmetric instability in two streamwise orthogonal planes for three-dimensional flow-induced vibration (FIV) of an elastically mounted cube at a moderate Reynolds number of 300 is numerically investigated in this paper. The full-order computational fluid dynamics method, data-driven stability analysis via the eigensystem realization algorithm and the selective frequency damping method and total dynamic mode decomposition (TDMD) are applied here to explore this problem. Due to the unsteady non-axisymmetric wakefield formed for flow passing a stationary cube, the FIV response was found to exhibit separate structural stability and oscillations (including lock-in and galloping behaviour) in the two different streamwise orthogonal planes while the body is released. The initial kinetic energy accompanying the release of the cube could destabilize the above-mentioned structural stability. The observed FIV asymmetric instability is verified by the root trajectory of the structural mode obtained via data-driven stability analysis. The stability of the structural modes dominates regardless of whether the structural response oscillates significantly in various (reduced) velocity ranges. Further TDMD analysis on the wake structure, accompanied by the time–frequency spectrum of time-history structural displacements, suggested that the present FIV unit with galloping behaviour is dominated by the combination of the shifted base-flow mode, structure modes and several harmonics of the wake mode.
The egg parasitoid Anastatus japonicus is a key natural enemy in the biological control of various agricultural and forestry pests. It is particularly used against the brown marmorated stink bug Halyomorpha halys and the emerging defoliator pest Caligula japonica in East Asia. It has been proved that the eggs of Antheraea pernyi can be used as a factitious host for the mass production of A. japonicus. This study systematically documented the parasitic behaviour and developmental morphology exhibited by A. japonicus on the eggs of A. pernyi. The parasitic behaviour of A. japonicus encompassed ten steps including searching, antennation, locating, digging, probing, detecting, oviposition, host-feeding, grooming, and resting. Oviposition, in particular, was observed to occur in three stages, with the parasitoids releasing eggs during the second stage when the body remained relatively static. Among all the steps of parasitic behaviour, probing accounted for the longest time, constituting 33.1% of the whole time. It was followed by digging (19.3%), oviposition (18.5%), antennation (9.6%), detecting (7.4%), and the remaining steps, each occupying less than 5.0% of the total event time. The pre-emergence of adult A. japonicus involves four stages: egg (0 to 2nd day), larva (3rd to 9th day), pre-pupa (10th to 13th day), pupa (14th to 22nd day), and subsequent development into an adult. Typically, it takes 25.60 ± 0.30 days to develop from an egg to an adult at 25℃. This information increases the understanding of the biology of A. japonicus and may provide a reference for optimising reproductive devices.
This experiment aimed to investigate the impacts of tributyrin (TB) dietary supplementation on serum biochemical indices and meat quality characteristics of longissimus thoracis et lumborum (LTL) muscle of lambs after weaning. Thirty healthy Small-Tailed Han female lambs (27.5 ± 4.1 kg; mean ± standard deviation) were randomly assigned to five treatments: basal diet (1) without TB, (2) with 0.5 g/kg TB, (3) with 1.0 g/kg TB, (4) with 2.0 g/kg TB or (5) with 4.0 g/kg TB. Each treatment consisted of six lambs, and the lambs were weaned on d 90 and were raised until d 165. Results showed that supplementing TB significantly promoted serum immunoglobulin concentrations of lambs such as immunoglobulins G, A and M. Besides, TB significantly increased muscle ether extract content, intermuscular fat length, pH value and redness but decreased lightness, drip loss and shear force. In addition, TB significantly elevated inosine-5ʹ-phosphate content and upregulated the relative expressions of genes related to lipid metabolism such as SREBP-1C, SCD, PPARγ, FAS and LPL. The mostly important, TB significantly enhanced essential amino acids (EAAs) and conjugated linoleic acids contents of the LTL muscle, despite it decreased total unsaturated fatty acids level. In conclusion, supplementing TB not only could promote the healthy status of weaned lambs via promoting serum immunity but also may improve nutritional quality of LTL muscle by improving EAA and conjugated linoleic acid contents.