We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ultra-thin liquid sheets generated by impinging two liquid jets are crucial high-repetition-rate targets for laser ion acceleration and ultra-fast physics, and serve widely as barrier-free samples for structural biochemistry. The impact of liquid viscosity on sheet thickness should be comprehended fully to exploit its potential. Here, we demonstrate experimentally that viscosity significantly influences thickness distribution, while surface tension primarily governs shape. We propose a thickness model based on momentum exchange and mass transport within the radial flow, which agrees well with the experiments. These results provide deeper insights into the behaviour of liquid sheets and enable accurate thickness control for various applications, including atomization nozzles and laser-driven particle sources.
Pouch-type actuators have recently garnered significant interest and are increasingly utilized in diverse fields, including soft wearable robotics and prosthetics. This is largely due to their lightweight, high output force, and low cost. However, the inherent hysteresis behavior markedly affects the stability and force control of pouch-type driven systems. This study proposes a modified generalized Prandtl–Ishlinskii (MGPI) model, which includes generalized play operators, the tangent envelope function, and one-sided dead-zone operators, to describe the asymmetric and non-convex hysteresis characteristics of pouch-type actuators. Compared to a classical Prandtl–Ishlinskii (PI) model incorporating one-sided dead-zone functions, the MGPI model exhibits smaller relative errors at six different air pressures, demonstrating its capability to accurately describe asymmetric and non-convex hysteresis curves. Subsequently, the MGPI hysteresis model is integrated with displacement sensing technology to establish a load compensation control system for maintaining human posture. Four healthy subjects are recruited to conduct a 1 kg load compensation test, achieving efficiencies of 85.84%, 84.92%, 83.63%, and 68.86%, respectively.
The neural correlates underlying late-life depressive symptoms and cognitive deterioration are largely unclear, and little is known about the role of chronic physical conditions in such association. This research explores both concurrent and longitudinal associations between late-life depressive symptoms and cognitive functions, with examining the neural substrate and chronic vascular diseases (CVDs) in these associations.
Methods
A total of 4109 participants (mean age = 65.4, 63.0% females) were evaluated for cognitive functions through various neuropsychological assessments. Depressive symptoms were assessed by the Geriatric Depression Scale and CVDs were self-reported. T1-weighted magnetic resonance imaging (MRI), diffusion tensor imaging, and functional MRI (fMRI) data were acquired in a subsample (n = 791).
Results
Cognitively, higher depressive symptoms were correlated with poor performance across all cognitive domains, with the strongest association with episodic memory (r = ‒0.138, p < 0.001). Regarding brain structure, depressive symptoms were negatively correlated with thalamic volume and white matter integrity. Further, white matter integrity was found to mediate the longitudinal association between depressive symptoms and episodic memory (indirect effect = −0.017, 95% CI −0.045 to −0.002) and this mediation was only significant for those with severe CVDs (β = −0.177, p = 0.008).
Conclusions
This study is one of the first to provide neural evidence elucidating the longitudinal associations between late-life depressive symptoms and cognitive dysfunction. Additionally, the severity of CVDs strengthened these associations, which enlightens the potential of managing CVDs as an intervention target for preventing depressive symptoms-related cognitive decline.
As global warming increases with the frequency of extreme weather, the distribution of species is inevitably affected. Among them, highly damaging invasive species are of particular concern. Being able to effectively predict the geographic distribution of invasive species and future distribution trends is a key entry point for their control. Opisina arenosella Walker is an invasive species, and its ability to live on the backs of foliage and generate canals to hide adds to the difficulty of control. In this paper, the current and future distributions of O. arenosella under three typical emission scenarios in 2050 and 2090 are projected based on the MaxEnt model combining 19 bioclimatic variables. Filter through the variables to find the four key environment variables: BIO 1, BIO 6, BIO 11 and BIO 4. The results show that O. arenosella is distributed only in the eight provinces of Tibet, Yunnan, Fujian, Guangxi, Taiwan, Guangdong, Hong Kong and Hainan in the southeastern region. Its high suitability area is concentrated in Taiwan and Hainan. In the long run, highly suitable areas will continue to increase in size, while moderately suitable areas and poorly suitable areas will decrease to varying degrees. This paper aims to provide theoretical references for the control of O. arenosella.
Changes in the distribution of species due to global climate change have a critically significant impact on the increase in the spread of invasive species. An in-depth study of the distribution patterns of invasive species and the factors influencing them can help to better predict and combat invasive alien species. Rhynchophorus ferrugineus Olivier is an invasive species that primarily harms plants of Trachycarpus H. Wendl. The pest invades trees in three main ways: by laying eggs and incubating them in the crown of the plant, on roots at the surface and at the base of the trunk or petiole. Most of the plants in the genus Trachycarpus are taller, and the damage is concentrated in the middle and upper parts of the plant, making control more difficult. In this paper, we combine 19 bioclimatic variables based on the MaxEnt model to project the current and future distributions of R. ferrugineus under three typical emission scenarios (2.6 W m−2 (SSP1-2.6), 4.5 W m−2 (SSP2-4.5) and 8.5 W m−2 (SSP5-8.5)) in the 2050s and 2090s. Among the 19 bioclimatic variables, five variables were screened out by contribution rates, namely annual mean temperature (BIO 1), precipitation of driest quarter (BIO 17), minimum temperature of coldest month (BIO 6), mean diurnal range (BIO 2) and precipitation of wettest quarter (BIO 16). These five variables are key environmental variables that influence habitat suitability for R. ferrugineus and are representative in reflecting its potential habitat. The results showed that R. ferrugineus is now widely distributed in the southeastern coastal area of China (high suitability zone), concentrating in the provinces of Hainan, Guangdong, Fujian, Guangxi and Taiwan. In the future, the area of high and low suitability zones will increase and the area of medium suitability zones will decrease. The area of low suitability zone will still be in the largest proportion. This study aims to provide a theoretical reference for the future control of R. ferrugineus from the perspective of geographic distribution.
Accurately evaluating the aerodynamic performance of the missile with damaged structures is very important for the subsequent flight control strategy. At present, few researchers have studied the aerodynamic characteristics of damaged supersonic cruise missiles. Based on CFD (computational fluid dynamics) solutions and the dynamic derivative identification method, the differences in static and dynamic characteristics between the damaged and undamaged models are compared. The results indicate that when the extent of damage increases, the change rate of drag coefficient at larger AoA (angle-of-attack) is greater than that at the smaller AoA. On the contrary, the change rate of lift coefficient at larger AoA is smaller than that at smaller AoA. Meanwhile, the absolute value of the static pitch moment decreases, but the absolute value of the roll moment increases. Damage causes a change in the absolute values of the pitch and roll dynamic derivatives, and the dynamic derivatives do not vary monotonically with the increase of AoA. The turning point occurs at about $\alpha$ = 5°. The areas of the hysteresis loops of the pitch-roll coupling moment increase, which makes the dynamic coupling characteristic between the pitch and roll directions increase. Finally, the maximum allowable damage extent of the missile wing that can achieve static trim is obtained and validated by controlling the deflection of the four rudders.
High-temperature non-equilibrium effects are prominent in scramjet nozzle flows at high Mach numbers. Hence, the thermochemical non-equilibrium gas model incorporating the vibrational relaxation process of molecules in the hydrocarbon-air reaction is developed to numerically simulate the flow of a hydrocarbon fuel scramjet nozzle at Mach 10. Besides, the results computed by the models of the thermally perfect gas, chemically non-equilibrium gas, and thermally non-equilibrium chemically frozen gas are applied for comparative studies. Results indicate that chemical non-equilibrium effects are more significant for the flow-field structure and parameters compared to thermal non-equilibrium effects. Meanwhile, vibrational relaxation and chemical reactions interact in the flow-field. The heat released from the chemical reactions in the flow-field of the thermochemical non-equilibrium gas model makes the thermal non-equilibrium effects weaker compared to the thermally non-equilibrium chemically frozen gas model; the chemical reactions in the thermochemical non-equilibrium gas model are more intense than in the chemically non-equilibrium gas model. Due to the slow relaxation of vibrational energy, the thermal non-equilibrium models predicted nozzle thrust lower than the thermal equilibrium models by approximately 1.11% to 1.33%; when considering the chemical reactions, the chemical non-equilibrium models predicted nozzle thrust higher than the chemical frozen models by approximately 7.30% to 7.54%. Hence, the structural design and performance study of the high Mach numbers scramjet nozzle must consider thermochemical non-equilibrium effects.
To meet the demands of laser-ion acceleration at a high repetition rate, we have developed a comprehensive diagnostic system for real-time and in situ monitoring of liquid sheet targets (LSTs). The spatially resolved rapid characterizations of an LST’s thickness, flatness, tilt angle and position are fulfilled by different subsystems with high accuracy. With the help of the diagnostic system, we reveal the dependence of thickness distribution on collision parameters and report the 238-nm liquid sheet generated by the collision of two liquid jets. Control methods for the flatness and tilt angle of LSTs have also been provided, which are essential for applications of laser-driven ion acceleration and others.
Warm ice at temperatures close to the pressure melting point is often encountered in deep ice-core drilling. The heat generated by rotary cutting can melt ice chips, which seriously threatens the safety of drilling if the chips refreeze on the drill bit or barrel. Lowering the cutting heat is an effective method to reduce the melting of ice chips. In this study, a general theoretical model was established based on heat transfer theory and the cutting mechanism to calculate and analyze the cutter temperature during the circulation of the drilling fluid. The model was validated by a series of experiments, which demonstrated reasonable agreement between the calculated data and experimental results, with a maximum error of <16%. The factors that contribute to the rise in the cutter temperature during warm ice drilling were investigated. Results suggest that the drilling fluid has excellent cooling performance, and its type and flow rate have minimal impact on the cutter temperature. To mitigate the cutter temperature rise, maximizing the rake angle and thermal conductivity of the cutter, while minimizing the rotation speed of the drill bit, cutting depth, cutter width and friction coefficient between the ice and cutter is recommended.
Here, we report the generation of MeV alpha-particles from H-11B fusion initiated by laser-accelerated boron ions. Boron ions with maximum energy of 6 MeV and fluence of 109/MeV/sr@5 MeV were generated from 60 nm-thick self-supporting boron nanofoils irradiated by 1 J femtosecond pulses at an intensity of 1019 W/cm2. By bombarding secondary hydrogenous targets with the boron ions, 3 × 105/sr alpha-particles from H-11B fusion were registered, which is consistent with the theoretical yield calculated from the measured boron energy spectra. Our results demonstrated an alternative way toward ultrashort MeV alpha-particle sources employing compact femtosecond lasers. The ion acceleration and product measurement scheme are referential for the studies on the ion stopping power and cross section of the H-11B reaction in solid or plasma.
Post-acceleration of protons in helical coil targets driven by intense, ultrashort laser pulses can enhance ion energy by utilizing the transient current from the targets’ self-discharge. The acceleration length of protons can exceed a few millimeters, and the acceleration gradient is of the order of GeV/m. How to ensure the synchronization between the accelerating electric field and the protons is a crucial problem for efficient post-acceleration. In this paper, we study how the electric field mismatch induced by current dispersion affects the synchronous acceleration of protons. We propose a scheme using a two-stage helical coil to control the current dispersion. With optimized parameters, the energy gain of protons is increased by four times. Proton energy is expected to reach 45 MeV using a hundreds-of-terawatts laser, or more than 100 MeV using a petawatt laser, by controlling the current dispersion.
The study aimed to explore the relationships of skeletal muscle mass with disease severity in metabolic-associated fatty liver disease (MAFLD) patients with different methods. Consecutive subjects undergoing bioelectrical impedance analysis were included. The steatosis grade and liver fibrosis were evaluated by MRI-derived proton density fat fraction and two-dimensional shear wave elastography. The appendicular skeletal muscle mass (ASM) was adjusted by height2 (ASM/H2), weight (ASM/W) and BMI (ASM/BMI). Overall, 2223 subjects (50·5 %, MAFLD; 46·9 %, male) were included, with the mean age 37·4 ± 10·6 years. In multivariate logistic regression analysis, the subjects with the lowest quartile (Q1) of ASM/W or ASM/BMI had higher risk ratios for MAFLD (OR (95 % CI) in male: 2·57 (1·35, 4·89), 2·11(1·22, 3·64); in female: 4·85 (2·33, 10·01), 4·81 (2·52, 9·16), all P < 0·05, all for Q1 v. Q4). The MAFLD patients with lower quartiles of ASM/W had the higher risk OR for insulin resistance (IR), both in male and female (2·14 (1·16, 3·97), 4·26 (1·29, 14·02) for Q4 v. Q1, both P < 0·05). While the significant OR were not observed when ASM/H2 and ASM/BMI were used. There were significant dose-dependent associations between decreased ASM/W as well as ASM/BMI and moderate–severe steatosis (2·85(1·54, 5·29), 1·90(1·09, 3·31), both P < 0·05) in male MAFLD patients. In conclusion, ASM/W is superior to ASM/H2 and ASM/BMI in predicting the degree of MAFLD. A lower ASM/W is associated with IR and moderate–severe steatosis in non-elderly male MAFLD.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Based on the characteristics of high-frequency swing during fast swimming of fish, this paper designs a bionic fish-driven joint based on electromagnetic drive to achieve high-frequency swing. Aiming at the characteristic parameters of high-frequency swing control, the Fourier transform is used to separate the characteristic parameters and then compared the driving accuracy of the joints in open-loop and closed-loop. The comparison results show that the closed-loop control is performed after Fourier transform. Under the same driving conditions, the closed-loop control method can improve the joint driving accuracy. Then a bionic fish robot composed of three joints is designed according to this method and Kane method is used to model it dynamically and combined with the central pattern generator control method to complete model simulation and related experiments. The experimental results show that the bionic fish prototype can swim faster under high-frequency swing under electromagnetically driven joints.
Carbon nanotube foams (CNFs) have been successfully used as near-critical-density targets in the laser-driven acceleration of high-energy ions and electrons. Here we report the recent advances in the fabrication technique of such targets. With the further developed floating catalyst chemical vapor deposition (FCCVD) method, large-area ($>25\kern0.5em {\mathrm{cm}}^2$) and highly uniform CNFs are successfully deposited on nanometer-thin metal or plastic foils as double-layer targets. The density and thickness of the CNF can be controlled in the range of $1{-}13\kern0.5em \mathrm{mg}/{\mathrm{cm}}^3$ and $10{-}200\kern0.5em \mu \mathrm{m}$, respectively, by varying the synthesis parameters. The dependence of the target properties on the synthesis parameters and the details of the target characterization methods are presented for the first time.
Anticipatory pleasure deficits are closely correlated with negative symptoms in schizophrenia, and may be found in both clinical and subclinical populations along the psychosis continuum. Prospection, which is an important component of anticipatory pleasure, is impaired in individuals with social anhedonia (SocAnh). In this study, we examined the neural correlates of envisioning positive future events in individuals with SocAnh.
Methods
Forty-nine individuals with SocAnh and 33 matched controls were recruited to undergo functional MRI scanning, during which they were instructed to simulate positive or neutral future episodes according to cue words. Two stages of prospection were distinguished: construction and elaboration.
Results
Reduced activation at the caudate and the precuneus when prospecting positive (v. neutral) future events was observed in individuals with SocAnh. Furthermore, compared with controls, increased functional connectivity between the caudate and the inferior occipital gyrus during positive (v. neutral) prospection was found in individuals with SocAnh. Both groups exhibited a similar pattern of brain activation for the construction v. elaboration contrast, regardless of the emotional context.
Conclusions
Our results provide further evidence on the neural mechanism of anticipatory pleasure deficits in subclinical individuals with SocAnh and suggest that altered cortico-striatal circuit may play a role in anticipatory pleasure deficits in these individuals.
The TanDEM-X DEM is a valuable data source for estimating glacier mass balance. However, the accuracy of TanDEM-X elevation over glaciers can be affected by microwave penetration and phase decorrelation. To investigate the bias of TanDEM-X DEMs of glaciers on the Tibetan Plateau, these DEMs were subtracted from SPOT-6 DEMs obtained around the same time at two study sites. The average bias over the studied glacier areas in West Kunlun (175.0 km2) was 2.106 ± 0.012 m in April 2014, and it was 1.523 ± 0.011 m in Geladandong (228.8 km2) in October 2013. By combining backscatter coefficients and interferometric coherence maps, we found surface decorrelation and baseline decorrelation can cause obvious bias in addition to microwave penetration. If the optical/laser data and winter TanDEM-X data were used as new and historic elevation sources for mass-balance measurements over an arbitrary observation period of 10 years, the glacier mass loss rates in West Kunlun and Geladandong would be potentially underestimated by 0.218 ± 0.016 and 0.158 ± 0.011 m w.e. a−1, respectively. The impact is therefore significant, and users should carefully treat the bias of TanDEM-X DEMs when retrieving a geodetic glacier mass balance.
The effect of working memory training (WM-T) has been found to transfer to emotional wellbeing, despite some debate on whether an affective component in training is necessary to achieve specific emotion-related benefits. These novel cognitive trainings have not yet been tested in highly anxious individuals, who have deficits in implicit and explicit emotional regulation and should be the potential beneficiaries of these trainings.
Methods
We designed two types of mobile phone-based training applications: (1) WMT and (2) an emotional working memory training (EWM-T) that comprised negative face distraction. Ninety-eight participants (33, WM-T; 35, EWM-T; 30, Control group) with high trait anxiety completed the 21-day intervention or placebo program and conducted pre- and post-test procedures, including questionnaires, emotional regulation and emotional Stroop tasks alongside electroencephalogram recording. Late positive potential (LPP) in emotion regulation task and P3 in the emotional Stroop task were adopted as neutral indicators for the explicit and implicit affective regulation/control processing.
Results
Those who had received training (WM-T and EWM-T) showed enhanced explicit regulation (indexed by reduced LPP during reappraisal) compared with the control. Besides, individuals in EWM-T showed reduced behavioral attention bias and a decline of P3 in response to negative faces in an emotional Stroop task. The altered neural indicators were correlated with corresponding behavior indexes that contributed to the anxiety alleviation.
Conclusions
The general WM-T was effective in enhancing explicit emotional regulation, while training with emotional add-in further improved implicit emotional control. (E)WM-T shows potential as a beneficial intervention for the anxiety population.
Bile acids (BA) have emerged as signalling molecules regulating intestinal physiology. The importance of intestinal microbiota in production of secondary BA, for example, lithocholic acid (LCA) which impairs enterocyte proliferation and permeability, triggered us to determine the effects of oral probiotics on intestinal BA metabolism. Piglets were weaned at 28 d of age and allocated into control (CON, n 14) or probiotic (PRO, n 14) group fed 50 mg of Lactobacillus plantarum daily, and gut microbiota and BA profile were determined. To test the potential interaction of LCA with bacteria endotoxins in inducing damage of enterocytes, IPEC-J2 cells were treated with LCA, lipopolysaccharide (LPS) and LCA + LPS and expressions of genes related to inflammation, antioxidant capacity and nutrient transport were determined. Compared with the CON group, the PRO group showed lower total LCA level in the ileum and higher relative abundance of the Lactobacillus genus in faeces. In contrast, the relative abundances of Bacteroides, Clostridium_sensu_stricto_1, Parabacteroides and Ruminococcus_1, important bacteria genera in BA biotransformation, were all lower in the PRO than in the CON group. Moreover, PRO piglets had lower postprandial glucagon-like peptide-1 level, while higher glucose level than CON piglets. Co-administration of LPS and LCA led to down-regulated expression of glucose and peptide transporter genes in IPEC-J2 cells. Altogether, oral L. plantarum altered BA profile probably by modulating relative abundances of gut microbial genera that play key roles in BA metabolism and might consequently impact glucose homoeostasis. The detrimental effect of LCA on nutrient transport in enterocytes might be aggravated under LPS challenge.
Limited information is available on the prevalence and effect of hypertriglyceridaemic–waist (HTGW) phenotype on the risk of type 2 diabetes mellitus (T2DM) in rural populations.
Design
In the present cross-sectional study, we investigated the prevalence of the HTGW phenotype and T2DM and the strength of their association among rural adults in China.
Setting
HTGW was defined as TAG >1·7 mmol/l and waist circumference (WC) ≥90 cm for males and ≥80 cm for females. Logistic regression analysis yielded adjusted odds ratios (aOR) relating risk of T2DM with HTGW.
Participants
Adults (n 12 345) aged 22·83–92·58 years were recruited from July to August of 2013 and July to August of 2014 from a rural area of Henan Province in China.
Results
The prevalence of HTGW and T2DM was 23·71 % (males: 15·35 %; females: 28·88 %) and 11·79 % (males: 11·15 %; females: 12·18 %), respectively. After adjustment for sex, age, smoking, alcohol drinking, blood pressure, physical activity and diabetic family history, the risk of T2DM (aOR; 95 % CI) was increased with HTGW (v. normal TAG and WC: 3·23; CI 2·53, 4·13; males: 3·37; 2·30, 4·92; females: 3·41; 2·39, 4·85). The risk of T2DM with BMI≥28·0 kg/m2, simple enlarged WC and simple disorders of lipid metabolism showed an increasing tendency (aOR=1·31, 1·75 and 2·32).
Conclusions
The prevalence of HTGW and T2DM has reached an alarming level among rural Chinese people, and HTGW is a significant risk factor for T2DM.